PS3.17

DICOM PS3.17 2016e - Explanatory Information

DICOM Standards Committee


Table of Contents

Notice and Disclaimer
Foreword
1. Scope and Field of Application
2. Normative References
Bibliography
3. Definitions
Glossary
4. Symbols and Abbreviations
5. Conventions
A. Explanation of Patient Orientation (Normative)
B. Integration of Modality Worklist and Modality Performed Procedure Step in The Original DICOM Standard (Informative)
C. Waveforms (Informative)
C.1. Domain of Application
C.2. Use Cases
C.3. Time Synchronization Frame of Reference
C.4. Waveform Acquisition Model
C.5. Waveform Information Model
C.6. Harmonization With HL7
C.6.1. HL7 Waveform Observation
C.6.2. Channel Definition
C.6.3. Timing
C.6.4. Waveform Data
C.6.5. Annotation
C.7. Harmonization With SCP-ECG
D. SR Encoding Example (Informative)
E. Mammography CAD (Informative)
E.1. Mammography CAD SR Content Tree Structure
E.2. Mammography CAD SR Observation Context Encoding
E.3. Mammography CAD SR Examples
E.3.1. Example 1: Calcification and Mass Detection With No Findings
E.3.2. Example 2: Calcification and Mass Detection With Findings
E.3.3. Example 3: Calcification and Mass Detection, Temporal Differencing With Findings
E.4. CAD Operating Point
E.5. Mammography CAD SR and For Processing / For Presentation Images
F. Chest CAD (Informative)
F.1. Chest CAD SR Content Tree Structure
F.2. Chest CAD SR Observation Context Encoding
F.3. Chest CAD SR Examples
F.3.1. Example 1: Lung Nodule Detection With No Findings
F.3.2. Example 2: Lung Nodule Detection With Findings and Anatomy/pathology Interpretation
F.3.3. Example 3: Lung Nodule Detection, Temporal Differencing With Findings
F.3.4. Example 4: Lung Nodule Detection in Chest Radiograph, Spatially Correlated With CT
G. Explanation of Grouping Criteria For Multi-frame Functional Group IODs (Informative)
H. Clinical Trial Identification Workflow Examples (Informative)
H.1. Example Use-case
I. Ultrasound Templates (Informative)
I.1. SR Content Tree Structure
I.2. Procedure Summary
I.3. Multiple Fetuses
I.4. Explicitly Specifying Calculation Dependencies
I.5. Linking Measurements to Images, Coordinates
I.6. Ob Patterns
I.7. Selected Value
I.8. OB-GYN Examples
I.8.1. Example 1: OB-GYN Root with Observation Context
I.8.2. Example 2: OB-GYN Patient Characteristics and Procedure Summary
I.8.3. Example 3: OB-GYN Multiple Fetus
I.8.4. Example 4: Biophysical Profile
I.8.5. Example 5: Biometry Ratios
I.8.6. Example 6: Biometry
I.8.7. Example 7: Amniotic Sac
I.8.8. Example 8: OB-GYN Ovaries
I.8.9. Example 9: OB-GYN Follicles
I.8.10. Example 10: Pelvis and Uterus
J. Handling of Identifying Parameters (Informative)
J.1. Purpose of This Annex
J.2. Integrated Environment
J.2.1. Modality Conforms to Modality Worklist and MPPS SOP Classes
J.2.2. Modality Conforms Only to The Modality Worklist SOP Class
J.2.3. Modality Conforms Only to The MPPS SOP Class
J.3. Non-integrated Environment
J.4. One MPPS Is Created in Response to Two Or More Requested Procedures
J.4.1. Choose Or Create A Value For Study Instance UID and Accession Number
J.4.2. Replicate The Image IOD
J.5. MPPS SOP Instance Created by Another System (not the Modality)
J.6. Mapping of Study Instance UIDs to the Study SOP Instance UID
K. Ultrasound Staged Protocol Data Management (Informative)
K.1. Purpose of this Annex
K.2. Prerequisites For Support
K.3. Definition of a Staged Protocol Exam
K.4. Attributes Used in Staged Protocol Exams
K.5. Guidelines
K.5.1. Staged Protocol Exam Identification
K.5.2. Stage and View Identification
K.5.3. Extra-protocol Image Identification
K.5.4. Multiple Images of A Stage-view
K.5.5. Workflow Management of Staged Protocol Images
K.5.5.1. Uninterrupted Exams - Single MPPS
K.5.5.2. Interrupted Exams - Multiple MPPS
K.5.5.2.2. Scheduled Follow-up Stages
L. Hemodynamics Report Structure (Informative)
M. Vascular Ultrasound Reports (Informative)
M.1. Vascular Report Structure
M.2. Vascular Examples
M.2.1. Example 1: Renal Vessels
M.2.2. Example 2: Carotids Extracranial
N. Echocardiography Procedure Reports (Informative)
N.1. Echo Patterns
N.2. Measurement Terminology Composition
N.3. Illustrative Mapping to ASE Concepts
N.3.1. Aorta
N.3.2. Aortic Valve
N.3.3. Left Ventricle - Linear
N.3.4. Left Ventricle Volumes and Ejection Fraction
N.3.5. Left Ventricle Output
N.3.6. Left Ventricular Outflow Tract
N.3.7. Left Ventricle Mass
N.3.8. Left Ventricle Miscellaneous
N.3.9. Mitral Valve
N.3.10. Pulmonary Vein
N.3.11. Left Atrium / Appendage
N.3.12. Right Ventricle
N.3.13. Pulmonic Valve / Pulmonic Artery
N.3.14. Tricuspid Valve
N.3.15. Right Atrium / Inferior Vena Cava
N.3.16. Congenital/Pediatric
N.4. Encoding Examples
N.4.1. Example 1: Patient Characteristics
N.4.2. Example 2: LV Dimensions and Fractional Shortening
N.4.3. Example 3: Left Atrium / Aortic Root Ratio
N.4.4. Example 4: Pressures
N.4.5. Example 5: Cardiac Output
N.4.6. Example 6: Wall Scoring
N.5. IVUS Report
O. Registration (Informative)
O.1. Spatial Registration and Spatial Fiducials SOP Classes
O.2. Functional Use Cases
O.3. System Interaction
O.4. Overview of Encoding
O.5. Matrix Registration
O.6. Spatial Fiducials
P. Transforms and Mappings (Informative)
Q. Breast Imaging Report (Informative)
Q.1. Breast Imaging Report Content Tree Structure
Q.2. Breast Imaging Report Examples
Q.2.1. Example 1: Screening Mammogram With Negative Findings
Q.2.2. Example 2: Screening Mammogram With Negative Findings
Q.2.3. Example 3: Diagnostic Mammogram - Unilateral
Q.2.4. Example 4: Diagnostic Mammogram and Ultrasound - Unilateral
R. Configuration Use Cases (Informative)
R.1. Install A New Machine
R.1.1. Configure DHCP
R.1.2. Configure LDAP
R.1.2.1. Pre-configure
R.1.2.2. Updating Configuration During Installation
R.1.2.3. Configure Client Then Update Server
R.1.3. Distributed Update Propagation
R.2. Legacy Compatibility
R.3. Obtain Configuration of Other Devices
R.3.1. Find AE When Given Device Type
R.4. Device Start up
R.5. Shutdown
R.5.1. Shutdown
R.5.2. Online/offline
R.6. Time Synchronization
R.6.1. High Accuracy Time Synchronization
R.6.2. Ordinary Time Synchronization
R.6.3. Background
R.6.3.1. Unsynchronized Time
R.6.3.2. Network Synchronized Time
R.6.3.3. External Clocks
R.6.4. SNTP Restrictions
R.6.5. Implementation Considerations
S. Legacy Transition For Configuration Management (Informative)
S.1. Legacy Association Requester, Configuration Managed Association Acceptor
S.1.1. DHCP Server
S.1.2. DNS Server
S.1.3. LDAP Server
S.2. Managed Association Requester, Legacy Association Acceptor
S.2.1. DHCP Server
S.2.2. DNS Server
S.2.3. LDAP Server
S.3. No DDNS Support
S.4. Partially Managed Devices
S.5. Adding The First Managed Device to A Legacy Network
S.5.1. New Servers Required
S.5.2. NTP
S.5.3. Documenting Managed and Unmanaged Nodes (DHCP, DNS, and LDAP)
S.5.3.1. DHCP Documentation
S.5.3.2. DNS Documentation
S.5.3.3. LDAP Documentation
S.5.3.4. Descriptions of Other Devices
S.5.4. Description of This Device
S.6. Switching A Node From Unmanaged to Managed in A Mixed Network
S.6.1. DHCP and DNS
S.6.2. NTP
S.6.3. Association Acceptors On This Node
S.6.4. Association Requesters On Legacy Nodes
S.6.5. Association Requesters On Managed Nodes
T. Quantitative Analysis References (Informative)
T.1. Definition of Left and Right in the Case of Quantitative Arterial Analysis
T.2. Definition of Diameter Symmetry with Arterial Plaques
T.3. Wall Motion Regions
T.3.1. Landmark Based Wall Motion Regions
T.3.2. Centerline Wall Motion Region
T.3.4. Radial Based Wall Motion Region
T.4. Quantitative Arterial Analysis Reference Method
T.4.1. Computer Calculated Reference
T.4.2. Interpolated Reference
T.4.3. Mean Local Reference
T.5. Positions in Diameter Graphic
U. Ophthalmology Use Cases (Informative)
U.1. Ophthalmic Photography Use Cases
U.1.1. Routine N-spot Exam
U.1.2. Routine N-spot Exam With Exceptions
U.1.3. Routine Flourescein Exam
U.1.4. External Examination
U.1.5. External Examination With Intention
U.1.6. External Examination With Drug Application
U.1.7. Routine Stereo Camera Examination
U.1.8. Relative Image Position Definitions
U.2. Typical Sequence of Events
U.3. Ophthalmic Tomography Use Cases (Informative)
U.3.1. Anterior Chamber Tomography
U.3.1.1. Anterior Chamber Exam For Phakic Intraocular Lens Surgery Planning
U.3.1.2. Anterior Chamber Angle Exam
U.3.1.4. Corneal Exam
U.3.2. Posterior Segment Tomography
U.3.2.1. Retinal Nerve Fiber Layer Exam
U.3.2.2. Macular Exam
U.3.2.3. Angiographic Exams
U.3.2.4. 3D Reconstruction Exam
U.3.2.5. Transverse Imaging
V. Hanging Protocols (Informative)
V.1. Example Scenario
V.2. Hanging Protocol Internal Process Model
V.3. Chest X-Ray Hanging Protocol Example
V.3.1. Hanging Protocol Definition Module
V.3.2. Hanging Protocol Environment Module
V.3.3. Hanging Protocol Display Module
V.4. Neurosurgery Planning Hanging Protocol Example
V.4.1. Hanging Protocol Definition Module
V.4.2. Hanging Protocol Environment Module
V.4.3. Hanging Protocol Display Module
V.5. Hanging Protocol Query Example
V.6. Display Set Patient Orientation Example
W. Digital Signatures in Structured Reports Use Cases (Informative)
X. Dictation-based Reporting With Image References (Informative)
X.1. Basic Data Flows
X.1.1. Dictation/transcription Reporting
X.1.2. Reporting With Image References
X.1.3. Reporting With Annotated Images
X.2. Transcribed Diagnostic Imaging SR Instance Content
X.2.1. SR Header Content
X.2.2. Transcribed Text Data Format
X.2.3. Image Reference Format
X.3. Transcribed Diagnostic Imaging CDA Instance Content
X.3.1. CDA Header Content
X.3.2. Transcribed Text Content
X.3.3. Image References
X.3.4. Icons
X.3.5. Structured Entries
X.4.3. Using The WADO Reference For DICOM Network Protocol Retrievals
X.4. Simultaneous SR and CDA Instance Creation
X.4.1. Equivalence
X.4.2. Document Cross-reference
Y. VOI LUT Functions (Informative)
Z. X-Ray Isocenter Reference Transformations (Informative)
Z.1. Introduction
Z.2. Positioner Coordinate System Transformations
Z.3. Table Coordinate System Transformations
AA. Radiation Dose Reporting Use Cases (Informative)
AA.1. Purpose of This Annex
AA.2. Definitions
AA.3. Use Cases
AA.3.1. Basic Dose Reporting
AA.3.2. Dose Reporting For Non-digital Imaging
AA.3.3. Dose Reporting Post-processing
AA.3.4. Dose Reporting Workflow Management
BB. Printing (Informative)
BB.1. Example of Print Management SCU Session (Informative)
BB.1.1. Simple Example
BB.1.2. Advanced Example (Retired)
CC. Storage Commitment (Informative)
CC.1. Storage Commitment Examples (Informative)
CC.1.1. Push Model Example
CC.1.2. Pull Model Example (Retired)
CC.1.3. Remote Storage of Data by The SCP
CC.1.4. Storage Commitment in Conjunction With Use of Storage Media
DD. Worklists (Informative)
DD.1. Examples For The Usage of The Modality Worklist (Informative)
DD.2. General Purpose Worklist Example (Informative) (Retired)
EE. Relevant Patient Information Query (Informative)
EE.1. Relevant Patient Information Query Example (Informative)
FF. CT/MR Cardiovascular Analysis Report Templates (Informative)
FF.2. Template Structure
FF.3. Report Example
GG. JPIP Referenced Pixel Data Transfer Syntax Negotiation (Informative)
HH. Segmentation Encoding Example (Informative)
II. Use of Product Characteristics Attributes in Composite SOP Instances (Informative)
II.1. Contrast/bolus Module
II.2. Enhanced Contrast/bolus Module
II.3. Device Module
II.4. Intervention Module
JJ. Surface Mesh Representation (Informative)
JJ.1. Multi-Dimensional Vectors
JJ.2. Encoding Examples
KK. Use Cases For The Composite Instance Root Retrieval Classes (Informative)
KK.1. Clinical Review
KK.1.1. Retrieval Based On Report References
KK.1.2. Selective Retrieval Without References to Specific Slices
KK.2. Local Use - "Relevant Priors"
KK.2.1. Anatomic Sub-region
KK.2.2. Worklists
KK.3. Attribute Based Retrieval
KK.4. CAD & Data Mining Applications
KK.5. Independent WADO Server
LL. Example SCU Use of The Composite Instance Root Retrieval Classes (Informative)
LL.1. Retrieval of Entire Composite Instances
LL.2. Retrieval of Selected Frame Composite Instances From Multi-frame Objects
LL.3. Retrieval of Selected Frame Composite Instances From MPEG-2, MPEG-4 AVC/H.264 or HEVC/H.265 Video
MM. Considerations For Applications Creating New Images From Multi-frame Images
MM.1. Scope
MM.2. Frame Extraction Issues
MM.2.1. Number of Frames
MM.2.2. Start and End Times
MM.2.3. Time Interval versus Frame Increment Vector
MM.2.4. MPEG-2, MPEG-4 AVC/H.264 or HEVC/H.265
MM.2.5. JPEG 2000 Part 2 Multi-Component Transform
MM.2.6. Functional Groups For Enhanced CT, MR, etc.
MM.2.7. Nuclear Medicine Images
MM.2.8. A "Single Frame" Multi-frame Image
MM.3. Frame Numbers
MM.4. Consistency
MM.5. Time Synchronization
MM.6. Audio
MM.7. Private Attributes
NN. Specimen Identification and Management
NN.1. Pathology Workflow
NN.2. Basic Concepts and Definitions
NN.2.1. Specimen
NN.2.2. Containers
NN.3. Specimen Module
NN.3.1. Scope
NN.3.2. Relationship With The Laboratory Information System
NN.3.3. Case Level Information and The Accession Number
NN.3.4. Laboratory Workflows and Specimen Types
NN.3.5. Relationship Between Specimens and Containers
NN.3.6. Relationship Between Specimens and Images
NN.4. Specimen Identification Examples
NN.4.1. One Specimen Per Container
NN.4.2. Multiple Items From Same Block
NN.4.3. Items From Different Parts in The Same Block
NN.4.4. Items From Different Parts On The Same Slide
NN.4.5. Tissue Micro Array
NN.5. Structure of The Specimen Module
NN.6. Examples of Specimen Module Use
NN.6.1. Gross Specimen
NN.6.2. Slide
NN.7. Specimen Data in Pathology Imaging Workflow Management
NN.7.1. Modality Worklist
NN.7.1.1. MWL for Whole Slide Imaging
NN.7.2. Modality Performed Procedure Step
OO. Structured Display (Informative)
OO.1. Structured Display Use Cases
OO.1.1. Dentistry
OO.1.2. Ophthalmology
OO.1.3. Cardiology
OO.1.4. Radiology
PP. 3D Ultrasound Volumes (Informative)
PP.1. Purpose of This Annex
PP.2. 3D Ultrasound Clinical Use Cases
PP.2.1. Use Cases
PP.2.2. Hierarchy of Use Cases
PP.3. 3D Ultrasound Solutions in DICOM
PP.3.1. 3D Volume Data sets
PP.3.2. 2D Derived Images
PP.3.3. Physiological Waveforms Associated With 3D Volume Data sets
PP.3.4. Workflow Considerations
QQ. Enhanced US Data Type Blending Examples (Informative)
QQ.1. Enhanced US Volume Use of the Blending and Display Pipeline
QQ.1.1. Example 1 - Grayscale P-Values Output
QQ.1.2. Example 2 - Grayscale-only Color Output
QQ.1.3. Example 3 - Color Tissue (Pseudo-color) Mapping
QQ.1.4. Example 4 - Fixed Proportion Additive Grayscale Tissue and Color Flow
QQ.1.5. Example 5 - Threshold Based On Flow_velocity
QQ.1.6. Example 6 - Threshold Based On Flow_velocity and Flow_variance W/2d Color Mapping
QQ.1.7. Example 7 - Color Tissue / Velocity / Variance Mapping - Blending Considers Both Data Paths
RR. Ophthalmic Refractive Reports Use Cases (Informative)
RR.1. Introduction
RR.2. Reference Tables For Equivalent Visual Acuity Notations
RR.2.1. Background
RR.2.2. Notations
RR.2.3. Use of The Lookup Table
RR.2.4. Traditional Charts
RR.2.5. ETDRS Charts
SS. Colon CAD (Informative)
SS.1. Colon CAD SR Content Tree Structure
SS.2. Colon CAD SR Observation Context Encoding
SS.3. Colon CAD SR Examples
SS.3.1. Example 1: Colon Polyp Detection With No Findings
SS.3.2. Example 2: Colon Polyp Detection With Findings
SS.3.3. Example 3: Colon Polyp Detection, Temporal Differencing With Findings
TT. Stress Testing Report Template (Informative)
UU. Macular Grid Thickness and Volume Report Use Cases (Informative)
UU.1. Introduction
UU.2. Use of B-scan Images
UU.3. Use of Tissue Measurements
UU.4. Axial Measurements
UU.5. En Face Measurements
UU.6. Interpretation of OPT
VV. Pediatric, Fetal and Congenital Cardiac Ultrasound Reports (Informative)
VV.1. Content Structure
VV.2. Pediatric, Fetal and Congenital Cardiac Ultrasound Patterns
VV.3. Measurement Terminology Composition
WW. Audit Messages (Informative)
WW.1. Message Example
WW.2. Workflow Example
XX. Use Cases for Application Hosting
XX.1. Agent-Specific Post Processing
XX.2. Support For Multi-site Collaborative Research
XX.3. Screening Applications
XX.4. Modality-Specific Post Processing
XX.5. Measurement/Evidence Document Creation
XX.6. CAD Rendering
YY. Compound and Combined Graphic Objects in Presentation States (Informative)
YY.1. An Example of The Compound Graphic 'axis'
YY.2. An Example of Distance Line Defined As A Combined Graphic Object
ZZ. Implant Template Description
ZZ.1. Implant Mating
ZZ.1.1. Mating Features
ZZ.1.2. Mating Feature ID
ZZ.1.3. Mating Feature Sets
ZZ.1.4. Degrees of Freedom
ZZ.1.5. Implant Assembly Templates
ZZ.2. Planning Landmarks
ZZ.3. Implant Registration and Mating Example
ZZ.3.1. Degrees of Freedom
ZZ.4. Encoding Example
ZZ.5. Implant Template Versions and Derivation
AAA. Implantation Plan SR Document (Informative)
AAA.1. Implantation Plan SR Document Content Tree Structure
AAA.2. Relationship Between Implant Template and Implantation Plan
AAA.3. Implantation Plan SR Document Total Hip Replacement Example
AAA.4. Implantation Plan SR Document Dental Drilling Template Example
BBB. Unified Procedure Step in Radiotherapy (Informative)
BBB.1. Purpose of this Annex
BBB.2. Use Case Actors
BBB.3. Use Cases
BBB.3.1. Treatment Delivery Normal Flow - Internal Verification
BBB.3.1.1. Message Sequencing
BBB.3.1.2. Transactions and Message Flow
BBB.3.2. Treatment Delivery Normal Flow - External Verification
BBB.3.2.1. Message Sequencing
BBB.3.2.2. Transactions and Message Flow
BBB.3.3. Treatment-delivery With External Verification - Override Or Additional Info Required
BBB.3.3.1. Message Sequencing
BBB.3.3.2. Transactions and Message Flow
BBB.3.4. Treatment-delivery With External Verification - Machine Adjustment Required
BBB.3.4.1. Message Sequencing
BBB.3.4.2. Transactions and Message Flow
CCC. Ophthalmic Axial Measurements and Intraocular Lens Calculations Use Cases (Informative)
CCC.1. Axial Measurements
CCC.2. Intraocular Lens Calculations Introduction
CCC.3. Output of An Ultrasound A-scan Device
CCC.4. Output of An Optical A-scan Device
CCC.5. IOL Calculation Results Example
DDD. Visual Field Static Perimetry Use Cases (Informative)
DDD.1. Introduction
DDD.2. Use Cases
DDD.2.1. Evaluation For Glaucoma
DDD.2.2. Neurological Disease
DDD.2.3. Diffuse and Local Defect
DDD.2.3.1. Diffuse Defect
DDD.2.4.2. Local Defect
EEE. Intravascular OCT Image (Informative)
EEE.1. Purpose of This Annex
EEE.2. IVOCT For Processing Parameters
EEE.2.1. Z Offset Correction
EEE.2.2. Refractive Index Correction
EEE.2.3. Polar-Cartesian Conversion
EEE.3. Intravascular Longitudinal Image
FFF. Enhanced XA/XRF Encoding Examples (Informative)
FFF.1. General Concepts of X-Ray Angiography
FFF.1.1. Time Relationships
FFF.1.1.1. Time Relationships of A Multi-frame Image
FFF.1.1.2. Time Relationships of One Frame
FFF.1.2. Acquisition Geometry
FFF.1.2.1. Patient Description
FFF.1.2.2. Patient Position
FFF.1.2.2.1. Table Description
FFF.1.2.2.2. Options For Patient Position On The X-Ray Table
FFF.1.2.3. Table Movement
FFF.1.2.3.1. Isocenter Coordinate System
FFF.1.2.3.2. Table Movement in The Isocenter Coordinate System
FFF.1.2.4. Positioner Movement
FFF.1.2.4.1. Positioner Movement in The Isocenter Coordinate System
FFF.1.2.4.2. X-Ray Incidence and Image Coordinate System
FFF.1.2.5. Field of View Transformations
FFF.1.2.5.1. Detector
FFF.1.2.5.2. Field of View
FFF.1.2.5.3. Field of View Rotation and Flip
FFF.1.3. Calibration
FFF.1.4. X-Ray Generation
FFF.1.5. Pixel Data Properties and Display Pipeline
FFF.2. Application Cases
FFF.2.1. Acquisition
FFF.2.1.1. ECG Recording at Acquisition Modality
FFF.2.1.1.1. User Scenario
FFF.2.1.1.2. Encoding Outline
FFF.2.1.1.3. Encoding Details
FFF.2.1.1.3.1. Enhanced XA Image
FFF.2.1.1.3.1.1. Synchronization Module Recommendations
FFF.2.1.1.3.1.2. General Equipment Module Recommendations
FFF.2.1.1.3.1.3. Cardiac Synchronization Module Recommendations
FFF.2.1.1.3.1.4. Enhanced XA/XRF Image Module Recommendations
FFF.2.1.1.3.1.5. Cardiac Synchronization Macro Recommendations
FFF.2.1.1.3.1.6. Frame Content Macro Recommendations
FFF.2.1.1.3.2. General ECG Object
FFF.2.1.1.3.2.1. General Series Module Recommendations
FFF.2.1.1.3.2.2. Synchronization Module Recommendations
FFF.2.1.1.3.2.3. General Equipment Module Recommendations
FFF.2.1.1.3.2.4. Waveform Identification Recommendations
FFF.2.1.1.3.2.5. Waveform Module Recommendations
FFF.2.1.1.4. Examples
FFF.2.1.1.4.1. Enhanced XA Image Without Cardiac Synchronization
FFF.2.1.1.4.2. Enhanced XA Image With Cardiac Synchronization
FFF.2.1.2. Multi-modality Waveform Synchronization
FFF.2.1.2.1. Both Modalities Synchronized Via NTP
FFF.2.1.2.1.1. User Scenario
FFF.2.1.2.1.2. Encoding Outline
FFF.2.1.2.1.3. Encoding Details
FFF.2.1.2.1.3.1. Enhanced XA Image
FFF.2.1.2.1.3.1.1. Synchronization Module Recommendations
FFF.2.1.2.1.3.1.2. Enhanced XA/XRF Image Module Recommendations
FFF.2.1.2.1.3.1.3. Frame Content Macro Recommendations
FFF.2.1.2.1.3.2. Waveform Object
FFF.2.1.2.1.4. Example
FFF.2.1.2.2. One Modality Sends Trigger to The Other Modality
FFF.2.1.2.2.1. User Scenario
FFF.2.1.2.2.2. Encoding Outline
FFF.2.1.2.2.3. Encoding Details
FFF.2.1.2.2.3.1. Enhanced XA Image
FFF.2.1.2.2.3.1.1. Synchronization Module Recommendations
FFF.2.1.2.2.3.1.2. Enhanced XA/XRF Image Module Recommendations
FFF.2.1.2.2.3.1.3. Frame Content Macro Recommendations
FFF.2.1.2.2.3.2. Waveform Object
FFF.2.1.2.2.3.2.2. Synchronization Module Recommendations
FFF.2.1.2.2.3.2.3. Waveform Identification Module Recommendations
FFF.2.1.2.2.3.2.4. Waveform Module Recommendations
FFF.2.1.2.2.4. Examples
FFF.2.1.2.2.4.1. Image modality sends trigger to the waveform modality
FFF.2.1.2.2.4.2. Waveform modality sends trigger to the image modality
FFF.2.1.3. Mechanical Movement
FFF.2.1.3.1. Rotational Acquisition
FFF.2.1.3.1.1. User Scenario
FFF.2.1.3.1.2. Encoding Outline
FFF.2.1.3.1.3. Encoding Details
FFF.2.1.3.1.3.1. XA/XRF Acquisition Module Recommendations
FFF.2.1.3.1.3.2. X-Ray Positioner Macro Recommendations
FFF.2.1.3.1.3.3. X-Ray Isocenter Reference System Macro Recommendations
FFF.2.1.3.1.4. Example
FFF.2.1.3.2. Peripheral/stepping Acquisition
FFF.2.1.3.2.1. User Scenario
FFF.2.1.3.2.2. Encoding Outline
FFF.2.1.3.2.3. Encoding Details
FFF.2.1.3.2.3.1. XA/XRF Acquisition Module Recommendations
FFF.2.1.3.2.3.2. X-Ray Table Position Macro Recommendations
FFF.2.1.3.2.3.3. X-Ray Isocenter Reference System Macro Recommendations
FFF.2.1.3.2.4. Example
FFF.2.1.4. Changes in X-Ray Controls
FFF.2.1.4.1. Exposure Regulation Control
FFF.2.1.4.1.1. User Scenario
FFF.2.1.4.1.2. Encoding Outline
FFF.2.1.4.1.3. Encoding Details
FFF.2.1.4.1.3.1. X-Ray Exposure Control Sensing Regions Macro Recommendations
FFF.2.1.4.1.4. Example
FFF.2.1.5. Image Detector and Field of View
FFF.2.1.5.1. User Scenario
FFF.2.1.5.2. Encoding Outline
FFF.2.1.5.3. Encoding Details
FFF.2.1.5.3.1. XA/XRF Acquisition Module Recommendations
FFF.2.1.5.3.2. X-Ray Image Intensifier Module Recommendations
FFF.2.1.5.3.3. X-Ray Detector Module Recommendations
FFF.2.1.5.3.4. X-Ray Field of View Macro Recommendations
FFF.2.1.5.3.5. XA/XRF Frame Pixel Data Properties Macro Recommendations
FFF.2.1.5.4. Examples
FFF.2.1.5.4.1. Field of View On Image Intensifier
FFF.2.1.5.4.2. Field of View On Digital Detector
FFF.2.1.6. Acquisitions With Contrast
FFF.2.1.6.1. User Scenario
FFF.2.1.6.2. Encoding Outline
FFF.2.1.6.3. Encoding Details
FFF.2.1.6.3.1. Enhanced Contrast/bolus Module Recommendations
FFF.2.1.6.3.2. Contrast/bolus Usage Macro Recommendations
FFF.2.1.6.4. Example
FFF.2.1.7. Acquisition Parameters For X-Ray Generation (kVp, mA, …)
FFF.2.1.7.1. User Scenario
FFF.2.1.7.2. Encoding Outline
FFF.2.1.7.3. Encoding Details
FFF.2.1.7.3.1. XA/XRF Acquisition Module Recommendations
FFF.2.1.7.3.2. Frame Content Macro Recommendations
FFF.2.1.7.3.3. X-Ray Frame Acquisition Macro Recommendations
FFF.2.1.7.4. Example
FFF.2.2. Review
FFF.2.2.1. Variable Frame-rate Acquisition With Skip Frames
FFF.2.2.1.1. User Scenario
FFF.2.2.1.2. Encoding Outline
FFF.2.2.1.3. Encoding Details
FFF.2.2.1.3.1. XA/XRF Multi-frame Presentation Module Recommendations
FFF.2.2.1.4. Example
FFF.2.3. Display
FFF.2.3.1. Standard Pipeline With Enhanced XA
FFF.2.3.1.1. User Scenario
FFF.2.3.1.2. Encoding Outline
FFF.2.3.1.3. Encoding Details
FFF.2.3.1.3.1. Enhanced XA/XRF Image Module Recommendations
FFF.2.3.1.3.2. XA/XRF Multi-frame Presentation Module Recommendations
FFF.2.3.1.3.3. Frame VOI LUT Macro Recommendations
FFF.2.3.1.3.4. Pixel Intensity Relationship LUT Macro Recommendations
FFF.2.3.1.3.5. XA/XRF Frame Pixel Data Properties Macro Recommendations
FFF.2.3.1.4. Example
FFF.2.3.2. Mask Subtraction
FFF.2.3.2.1. User Scenario
FFF.2.3.2.2. Encoding Outline
FFF.2.3.2.3. Encoding Details
FFF.2.3.2.3.1. Mask Module Recommendations
FFF.2.3.2.3.2. XA/XRF Multi-frame Presentation Module Recommendations
FFF.2.3.2.4. Examples
FFF.2.3.3. Pixel-shift
FFF.2.3.3.1. User Scenario
FFF.2.3.3.2. Encoding Outline
FFF.2.3.3.3. Encoding Details
FFF.2.3.3.3.1. Mask Module Recommendations
FFF.2.3.3.3.2. Frame Pixel Shift Macro Recommendations
FFF.2.3.3.4. Examples
FFF.2.3.3.4.1. Usage of Pixel Shift Macro in Shared Context
FFF.2.3.3.4.2. Usage of Pixel Shift Macro in "per Frame" Context
FFF.2.3.3.4.3. Usage of Pixel Shift Macro in "per Frame" Context For Multiple Shifts
FFF.2.4. Processing
FFF.2.4.1. Projection Pixel Calibration
FFF.2.4.1.1. User Scenario
FFF.2.4.1.2. Encoding Outline
FFF.2.4.1.3. Encoding Details
FFF.2.4.1.3.1. XA/XRF Acquisition Module Recommendations
FFF.2.4.1.3.2. XA/XRF Frame Pixel Data Properties Macro Recommendations
FFF.2.4.1.3.3. X-Ray Projection Pixel Calibration Macro Recommendations
FFF.2.4.1.3.4. X-Ray Geometry Macro Recommendations
FFF.2.4.1.4. Example
FFF.2.4.2. Image Derivation and Pixel Data Properties
FFF.2.4.2.1. User Scenario
FFF.2.4.2.2. Encoding Outline
FFF.2.4.2.3. Encoding Details
FFF.2.4.2.3.1. Enhanced XA/XRF Image Module Recommendations
FFF.2.4.2.3.2. Derivation Image Macro Recommendations
FFF.2.4.2.3.3. Pixel Intensity Relationship LUT Macro Recommendations
FFF.2.4.2.3.4. XA/XRF Frame Characteristics Macro Recommendations
FFF.2.4.2.3.5. XA/XRF Frame Pixel Data Properties Macro Recommendations
FFF.2.4.2.4. Examples
FFF.2.4.2.4.1. Various Successive Derivations
FFF.2.4.2.4.2. Derivation by Applying A Square Root Transformation
FFF.2.5. Registration
FFF.2.5.1. Tracking An Object of Interest On Multiple 2d Images
FFF.2.5.1.1. User Scenario
FFF.2.5.1.2. Encoding Outline
FFF.2.5.1.3. Encoding Details
FFF.2.5.1.3.1. Image Pixel Module Recommendations
FFF.2.5.1.3.2. XA/XRF Acquisition Module Recommendations
FFF.2.5.1.3.3. X-Ray Detector Module Recommendations
FFF.2.5.1.3.4. X-Ray Field of View Macro Recommendations
FFF.2.5.1.3.5. X-Ray Isocenter Reference System Macro Recommendations
FFF.2.5.1.3.6. X-Ray Geometry Macro Recommendations
FFF.2.5.1.3.7. XA/XRF Frame Pixel Data Properties Macro Recommendations
FFF.2.5.1.4. Example
GGG. Unified Worklist and Procedure Step - UPS (Informative)
GGG.1. Introduction
GGG.2. Implementation Examples
GGG.2.1. Typical SOP Class Implementations
GGG.2.2. Typical Pull Workflow
GGG.2.3. Reporting Workflow With "hand-off"
GGG.2.4. Third Party Cancel
GGG.2.5. Radiation Therapy Dose Calculation Push Workflow
GGG.2.6. X-Ray Clinic Push Workflow
GGG.2.7. Other Examples
GGG.3. Other Features
GGG.3.1. What Was Scheduled Vs. What Was Performed
GGG.3.2. Complex Procedure Steps
GGG.3.3. Gift Subscriptions
HHH. Evolution of WADO to Web and Rest Services (Informative)
HHH.1. Request and Response Parameters
HHH.1.1. Request Parameters
HHH.1.2. Response Parameters
HHH.1.2.1. URI WADO-URI
HHH.1.2.2. WADO-WS
HHH.1.2.3. WADO-RS
HHH.1.2.4. STOW-RS
HHH.2. Web and Rest Services Implementation
HHH.3. Uses For WADO-WS, WADO-RS and STOW-RS Services
HHH.3.1. General Requirements
HHH.3.2. Analysis of Use Cases
HHH.3.3. Description of The Use Cases
HHH.3.3.1. URI Based WADO Use Case
HHH.3.3.2. DICOM (Encoded Content) Requester
HHH.3.3.3. Rendered (JPEG/PDF) Requester
HHH.3.3.4. Metadata (XML Without Pixel Data, Waveform Data, etc.) Requester
HHH.3.3.5. DICOM Requester
HHH.3.3.6. Frame Pixel Data Requester
HHH.3.3.7. Bulk Data Requester
HHH.3.3.8. Metadata Requester
HHH.3.3.9. DICOM Creator
HHH.3.3.10. Metadata and Bulk Data Creator
HHH.4. Uses For QIDO Services
HHH.4.1. General Requirements
HHH.4.2. Analysis of Use Cases
HHH.4.2.1. Search From EMR
HHH.4.2.2. Populating FHIR Resources
HHH.4.2.3. Worklist in Viewer
HHH.4.2.4. Multiple Systems Query
HHH.4.2.5. Clinical Reconstruction
HHH.4.2.6. Mobile Device Access
HHH.4.3. Description of The Use Cases
HHH.4.3.1. XML Study Search Use Case
HHH.4.3.2. XML Study, Series and Instance Search Use Case
HHH.4.3.3. JSON Use Case
HHH.5. IHE ITI Compatibility
HHH.6. Proxy Agent For Non-WS DICOM Archive
HHH.7. Uses for Server Options Services
HHH.7.1. WADL Example (XML)
III. Ophthalmic Thickness Map Use Cases (Informative)
III.1. Introduction
III.2. Macular Retinal Thickness Example
III.3. RNFL Example
III.4. Diabetic Macular Edema Example
III.5. Glaucoma Example
III.6. Retinal Thickness Definition
III.7. Thickness Calculations Between Various Devices
JJJ. Optical Surface Scan
JJJ.1. General Information
JJJ.2. One Single Shot Without Texture Acquisition As Point Cloud
JJJ.3. One Single Shot With Texture Acquisition As Mesh
JJJ.4. Storing Modified Point Cloud With Texture As Mesh
JJJ.5. Multishot Without Texture As Point Clouds and Merged Mesh
JJJ.6. Multishot With Two Texture Per Point Cloud
JJJ.7. Using Colored Vertices Instead of Texture
JJJ.8. 4D Surface Data Analysis
JJJ.9. Referencing A Texture From Another Series
KKK. Use-cases For Conversion of Classic Single Frame Images to Legacy Converted Enhanced Multi-frame Images (Informative)
KKK.1. Introduction
KKK.2. Enhanced Legacy Converted Image Storage IODs
KKK.3. Heterogeneous Environment
KKK.4. Compatibility With Modality Association Negotiation
KKK.5. Query and Retrieval
KKK.6. Referential Integrity
KKK.7. Persistence and Determinism
KKK.8. Source References
KKK.9. Uncertainty Principle
LLL. Conversion of Single Frame Images to Legacy Converted Enhanced Multi-frame Images (Informative)
LLL.1. Introduction
LLL.2. Simple CT Example
LLL.2.1. Images
LLL.2.1.1. First Slice As Classic Image
LLL.2.1.2. Second Slice As Classic Image
LLL.2.1.3. Legacy Converted Enhanced Image Containing Both Slices
LLL.2.2. Presentation States
LLL.2.2.1. Presentation State Referencing Classic Image That Contains The First Slice
LLL.2.2.2. Presentation State Referencing First Slice in Legacy Converted Enhanced Image
MMM. Query and Retrieval of Legacy Converted Enhanced Multi-frame Images (Informative)
MMM.1. Introduction
MMM.2. CT Example with Images and Presentation States
MMM.2.1. C-FIND and C-MOVE At Study Level With Classic View
MMM.2.2. C-FIND and C-MOVE at Study Level with Enhanced View
NNN. Corneal Topography and Tomography Maps (Informative)
NNN.1. Introduction
NNN.2. Corneal Topography Scales and Color Palettes
NNN.3. Corneal Topography Examples
NNN.4. Contact Lens Fitting Examples
NNN.5. Wavefront Map Example
OOO. Radiopharmaceutical Radiation Dose Structured Report (Informative)
OOO.1. Purpose of This Annex
OOO.2. Real-World Nuclear Medicine and PET Radiopharmaceutical Radiation Dose (RRD) SR Workflow
OOO.3. Real-World Radiopharmaceutical and Radiopharmaceutical Components Identification
PPP. Examples of Communication of Display Parameters (Informative)
PPP.1. The Relationship Between AE and Display System
PPP.2. Examples of Message Sequencing
PPP.2.1. Example of Retrieval of Status and Configuration From Display Systems
PPP.3. Examples of Display System SOP Class
PPP.3.1. An Example of A Typical Display System
PPP.3.2. An Example of A Tablet Display
QQQ. Parametric Maps (Informative)
QQQ.1.
QQQ.1.1.
RRR. Measurement Report SR Document for Planar and Volumetric ROI (Informative)
RRR.1. Measurement Report SR Document Volumetric ROI on CT Example
RRR.2. Measurement Report SR Document Volumetric ROI on CT Example
RRR.3. Measurement Report SR Document Planar ROI on DCE-MR Tracer Kinetic Model Example
RRR.4. Measurement Report SR Document Volumetric and SUV ROI on FDG PET Example
SSS. Use of Image Libraries in SR Documents (Informative)
SSS.1. Image Library for PET-CT Example
TTT. X-Ray 3D Angiographic Image Encoding Examples (Informative)
TTT.1. General Concepts of X-Ray 3D Angiography
TTT.1.1. Process of Creating An X-Ray 3D Angiography
TTT.1.1.1. Acquisition of 2D Projections
TTT.1.1.2. 3D Reconstruction
TTT.1.2. X-Ray 3D Angiographic Real World Entities Relationships
TTT.1.3. X-Ray 3D Angiographic Pixel Data Characterization
TTT.2. Application Cases
TTT.2.1. Case #1: One Rotation, One 2D Instance, One Reconstruction, One X-Ray 3D Instance
TTT.2.1.1. User Scenario
TTT.2.1.2. Encoding Outline
TTT.2.1.3. Encoding Details
TTT.2.1.3.1. X-Ray 3D Angiographic Image IOD
TTT.2.1.3.1.1. General and Enhanced Series Modules Recommendations
TTT.2.1.3.1.2. Frame of Reference Module Recommendations
TTT.2.1.3.1.3. General and Enhanced General Equipment Modules Recommendations
TTT.2.1.3.1.4. Image Pixel Module Recommendations
TTT.2.1.3.1.5. Enhanced Contrast/Bolus Module Recommendations
TTT.2.1.3.1.5.1. Differences between XA and Enhanced XA
TTT.2.1.3.1.6. Multi-frame Dimensions Module Recommendations
TTT.2.1.3.1.7. Patient Orientation Module Recommendations
TTT.2.1.3.1.8. X-Ray 3D Image Module Recommendations
TTT.2.1.3.1.9. X-Ray 3D Angiographic Image Contributing Sources Module Recommendations
TTT.2.1.3.1.10. X-Ray 3D Angiographic Acquisition Module Recommendations
TTT.2.1.3.1.11. Pixel Measures Macro Recommendations
TTT.2.1.3.1.12. Frame Content Macro Recommendations
TTT.2.1.3.1.13. Derivation Image Macro Recommendations
TTT.2.1.3.1.14. Frame Anatomy Macro Recommendations
TTT.2.1.3.1.15. X-Ray 3D Frame Type Macro Recommendations
TTT.2.1.4. Example
TTT.2.1.4.1. Reconstruction Using All Frames of An Enhanced XA Image
TTT.2.2. Case #2: Reconstruction From A Sub-set of Projection Frames
TTT.2.2.1. User Scenario
TTT.2.2.2. Encoding Outline
TTT.2.2.3. Encoding Details
TTT.2.2.3.1. X-Ray 3D Angiographic Image IOD
TTT.2.2.3.1.1. X-Ray 3D Angiographic Acquisition Module Recommendations
TTT.2.2.3.1.2. Frame Content Macro Recommendations
TTT.2.2.4. Example
TTT.2.3. Case #3: Reconstruction From A Sub-region of All Image Frames
TTT.2.3.1. User Scenario
TTT.2.3.2. Encoding Outline
TTT.2.3.3. Encoding Details
TTT.2.3.3.1. X-Ray 3D Angiographic Image IOD
TTT.2.3.3.1.1. Frame of Reference Module Recommendations
TTT.2.3.3.1.2. Pixel Measures Macro Recommendations
TTT.2.3.3.1.3. Plane Position (Patient) Macro Recommendations
TTT.2.3.3.1.4. Plane Orientation (Patient) Macro Recommendations
TTT.2.3.3.1.5. Frame Content Macro Recommendations
TTT.2.3.3.1.6. Frame Anatomy Macro Recommendations
TTT.2.3.4. Example
TTT.2.4. Case #4: Multiple Rotations, One Or More 2D Instances, One Reconstruction, One X-Ray 3D Instance
TTT.2.4.1. User Scenario
TTT.2.4.2. Encoding Outline
TTT.2.4.3. Encoding Details
TTT.2.4.3.1. 2D X-Ray Angiographic Image IOD
TTT.2.4.3.1.1. Frame of Reference Module Recommendations
TTT.2.4.3.2. X-Ray 3D Angiographic Image IOD
TTT.2.4.3.2.1. X-Ray 3D Angiographic Image Contributing Sources Module Recommendations
TTT.2.4.3.2.2. X-Ray 3D Angiographic Acquisition Module Recommendations
TTT.2.4.3.2.3. Frame Content Macro Recommendations
TTT.2.4.4. Example
TTT.2.5. Case #5: One Rotation, One 2D Instance, Multiple Reconstructions, One X-Ray 3D Instance
TTT.2.5.1. User Scenario
TTT.2.5.2. Encoding Outline
TTT.2.5.3. Encoding Details
TTT.2.5.3.1. 2D X-Ray Angiographic Image IOD
TTT.2.5.3.2. X-Ray 3D Angiographic Image IOD
TTT.2.5.3.2.1. Image Pixel Module Recommendations
TTT.2.5.3.2.2. Multi-frame Dimension Module Recommendations
TTT.2.5.3.2.3. X-Ray 3D Angiographic Acquisition Module Recommendations
TTT.2.5.3.2.4. X-Ray 3D Reconstruction Module Recommendations
TTT.2.5.3.2.5. Frame Content Macro Recommendations
TTT.2.5.3.2.6. Cardiac Synchronization Macro Recommendations
TTT.2.5.3.2.7. X-Ray 3D Frame Type Macro Recommendations
TTT.2.5.4. Example
TTT.2.6. Case #6: Two Rotations, Two 2D Instances, Two Reconstructions, Two X-Ray 3D Instances
TTT.2.6.1. User Scenario
TTT.2.6.2. Encoding Outline
TTT.2.6.3. Encoding Details
TTT.2.6.3.1. X-Ray 3D Angiographic Image IOD
TTT.2.6.3.1.1. Frame of Reference Module Recommendations
TTT.2.6.3.1.2. Patient Orientation Module Recommendations
TTT.2.6.3.1.3. Pixel Measures Macro Recommendations
TTT.2.6.3.1.4. Plane Position (Patient) Macro Recommendations
TTT.2.6.3.1.5. Plane Orientation (Patient) Macro Recommendations
TTT.2.6.4. Example
TTT.2.7. Case #7: Spatial Registration of 3D X-Ray Angiography With Enhanced XA
TTT.2.7.1. User Scenario
TTT.2.7.2. Encoding Outline
TTT.2.7.3. Encoding Details
TTT.2.7.3.1. Enhanced X-Ray Angiographic Image IOD
TTT.2.7.3.2. X-Ray 3D Angiographic Image IOD
TTT.2.7.3.2.1. Frame of Reference Module Recommendations
TTT.2.7.3.2.2. Patient Orientation Module
TTT.2.7.3.2.3. Image - Equipment Coordinate Relationship Module
TTT.2.7.3.2.4. X-Ray 3D Angiographic Acquisition Module Recommendations
TTT.2.7.4. Example
UUU. Ophthalmology Use Cases (Informative)
UUU.1. Wide Field Ophthalmic Use Cases
UUU.1.1. Clinical Use Cases
UUU.1.1.1. Routine Wide Field Image For Surveillance For Diabetic Retinopathy
UUU.1.1.2. Patient With Myopia
UUU.1.1.3. Patient With Diabetes
UUU.1.1.4. Patient With Age Related Macular Degeneration (ARMD)
UUU.1.2. Stereographic Projection (SP)
UUU.1.2.1. Distance
UUU.1.2.2. Area
UUU.1.2.3. Angle
UUU.1.3. Introduction to 2D to 3D Map For Wide Field Ophthalmic Photography
UUU.1.3.1. Measuring the Length of a Path
UUU.1.3.2. Shortest Distance Between Two Points
UUU.1.3.3. Computing The Area of A Region of Interest
UUU.1.3.4. Transformation Method Code Sequence
VVV. Segmentation of Images of Groups of Animals (Informative)
VVV.1. Use Case
VVV.1.1. Reference Attributes
VVV.1.1.1. Acquired Images of Multiple Animals
VVV.1.1.2. Segmentation Instances
VVV.1.1.3. Derived Images of Single Animals
VVV.1.2. Propagation of Composite Context
VVV.1.3. Propagation of History
WWW. Tractography Results (Informative)
WWW.1. Introduction
WWW.2. Encoding Example
XXX. Volumetric Presentation States (Informative)
XXX.1. Scope of Volumetric Presentation States
XXX.1.1. Volumetric Presentation States vs. Softcopy Presentation States
XXX.1.2. Image Creation Process
XXX.1.3. Volumetric Presentation State Display Consistency
XXX.2. Volumetric Presentation States vs. Static Derived Images
XXX.2.1. Static Derived Images
XXX.2.2. Volumetric Presentation States
XXX.2.3. Both Volumetric Presentation States and Linked Static Images
XXX.3. Use Cases
XXX.3.1. Simple Planar MPR View
XXX.3.1.1. User Scenario
XXX.3.1.2. Encoding Outline
XXX.3.1.3. Encoding Details
XXX.3.1.3.1. Volumetric Presentation State Relationship Module Recommendations
XXX.3.1.3.2. Volumetric Presentation State Display Module Recommendations
XXX.3.2. Spatially Related Views (e.g. Orthogonal)
XXX.3.2.1. User Scenario
XXX.3.2.2. Encoding Outline
XXX.3.2.3. Encoding Details
XXX.3.2.3.1. Volumetric Presentation State Identification Module Recommendations
XXX.3.2.3.2. Volumetric Presentation State Relationship Module Recommendations
XXX.3.2.3.3. Presentation View Description Module Recommendations
XXX.3.3. Replacing Set of Derived Images with Multiple Volumetric Presentation States
XXX.3.3.1. User Scenario
XXX.3.3.2. Encoding Outline
XXX.3.3.3. Encoding Details
XXX.3.3.3.1. Volumetric Presentation State Identification Module Recommendations
XXX.3.4. Replacing Set of Derived Images With Single VPS Using Crosscurve Animation
XXX.3.4.1. User Scenario
XXX.3.4.2. Encoding Outline
XXX.3.4.3. Encoding Details
XXX.3.4.3.1. Presentation Animation Module Recommendations
XXX.3.5. Volumetric Annotations (example: Trajectory Planning)
XXX.3.5.1. User Scenario
XXX.3.5.2. Encoding Outline
XXX.3.5.3. Encoding Details
XXX.3.5.3.1. Volumetric Graphic Annotation Module Recommendations
XXX.3.6. Highlighting Areas of Interest in MPR View
XXX.3.6.1. User Scenario
XXX.3.6.2. Encoding Outline
XXX.3.6.3. Encoding Details
XXX.3.6.3.1. Volumetric Presentation State Relationship Module Recommendations
XXX.3.6.3.2. Volumetric Presentation State Cropping Module Recommendations
XXX.3.6.3.3. Volumetric Presentation State Display Module Recommendations
XXX.3.7. Ultrasound Color Flow MPR
XXX.3.7.1. User Scenario
XXX.3.7.2. Encoding Outline
XXX.3.7.3. Encoding Details
XXX.3.7.3.1. Volumetric Presentation State Relationship Module Recommendations
XXX.3.7.3.2. Presentation View Description Module Recommendations
XXX.3.7.3.3. Multi-Planar Reconstruction Geometry Module Recommendations
XXX.3.7.3.4. Volumetric Presentation State Display Module Recommendations
XXX.3.8. Blending with Functional Data, e.g. PET/CT or Perfusion Data
XXX.3.8.1. User Scenario
XXX.3.8.2. Encoding Outline
XXX.3.8.3. Encoding Details
XXX.3.8.3.1. Volumetric Presentation State Relationship Module Recommendations
XXX.3.8.2.3. Volumetric Presentation State Display Module Recommendations
XXX.3.9. Stent Stabilization
XXX.3.9.1. User Scenario
XXX.3.9.2. Encoding Outline
XXX.3.9.3. Encoding Details
XXX.3.9.3.1. Volumetric Presentation State Identification Module Recommendations
XXX.3.9.3.2. Volumetric Presentation State Relationship Module Recommendations
XXX.3.9.3.3. Presentation View Description Module Recommendations
XXX.3.9.3.4. Presentation Animation Module Recommendations
XXX.4. Uses of Presentation View Description in the Identification Module
XXX.4.1. Hanging Protocols
XXX.4.2. Structured Displays
XXX.4.3. Ad Hoc Display Layout
XXX.5. Compositing and the Use of Weighting Transfer Functions
XXX.5.1. Fixed Proportional Compositing
XXX.5.2. Partially Transparent A Over B Compositing
XXX.5.3. Pass-through Compositing
XXX.5.4. Threshold Compositing
XXX.6. Usage of the Classification and Compositing Components
YYY. Preclinical Small Animal Imaging Acquisition Context (Informative)
YYY.1.
YYY.1.1. Example of housing and anesthesia for PET-CT
YYY.1.2. Example of exogenous substance administration to encode tumor cell line
YYY.1.3. Informative References
ZZZ. Content Assessment (Informative)
ZZZ.1. RT Plan Treatment Assessment Use Case
AAAA. Protocol Storage Examples and Concepts (informative)
AAAA.1. Protocol Storage Concepts
AAAA.1.1. Use Cases
AAAA.1.2. Workflow
AAAA.2. Routine Adult Head Protocol
AAAA.2.1. Common Context
AAAA.2.2. Scantech Industries
AAAA.2.3. Acme
AAAA.3. CT Protocol For Tumor Volumetric Measurements
AAAA.3.1. Common Context
AAAA.3.2. Acme
BBBB. Color information for Parametric Object (Informative)
BBBB.1. Introduction
BBBB.2. Encoding Example
CCCC. Populating The Simplified Echo Procedure Report Template (Informative)
CCCC.1. Structure Overview
CCCC.2. Use Cases
CCCC.2.1. Use Case 1: Store and Extract Specific Measurement
CCCC.2.1.1. Configuration
CCCC.2.1.2. Operation
CCCC.2.2. Use Case 2: Store and Process Measurements
CCCC.2.2.1. Configuration
CCCC.2.2.2. Operation
CCCC.3. Differences of Note Between TID_5200 and TID 5300
CCCC.3.1. Report Sections
CCCC.3.2. Finding Observation Type
CCCC.4. Usage Guidance
CCCC.4.1. Finding Site
CCCC.4.2. Measured Property
CCCC.4.3. Image View
CCCC.4.4. Cardiac Cycle Point
CCCC.4.5. Measurement Method
CCCC.4.6. Selection Status
CCCC.4.7. Additional Modifiers
CCCC.5. Example
DDDD. Types of Echocardiography Measurement Specifications (Informative)
DDDD.1. Overview
DDDD.2. Specification of Standard Measurements
DDDD.3. Specification of Non-standard Measurements
DDDD.3.1. Acquiring the Intended Real-World Quantity
DDDD.3.2. Interpreting the Non-Standard Measurement
DDDD.3.3. Determining Equivalence of Measurements from Different Sources
DDDD.4. Specification of Adhoc (One-Time) Measurements

List of Figures

A-1. Standard Anatomic Position Directions - Whole Body
A-2. Standard Anatomic Position Directions - Hand
A-3. Standard Anatomic Position Directions - Foot
A-4. Views - Anterior and Lateral
A-5. Planes - Whole Body - Transverse
A-6. Planes - Whole Body - Sagittal
A-7. Planes - Whole Body - Coronal
A-8. Planes - Hand
A-9. Planes - Double Obliquity
A-10. Standard Anatomic Position Directions - Paired Hands
A-11. Breast - MedioLateral Oblique
A-12. Panoramic Zonogram Directions
B-1. Functional View - Modality Worklist and Modality Performed Procedure Step Management in the Context of DICOM Service Classes
B-2. Relationship of the Original Model and the Extensions for Modality Worklist and Modality Performed Procedure Step Management
C.4-1. Waveform Acquisition Model
C.5-1. DICOM Waveform Information Model
E.1-1. Top Levels of Mammography CAD SR Content Tree
E.1-2. Summary of Detections and Analyses Levels of Mammography CAD SR Content Tree
E.1-3. Example of Individual Impression/Recommendation Levels of Mammography CAD SR Content Tree
E.2-1. Example of Use of Observation Context
E.3-1. Mammograms as Described in Example 1
E.3-2. Mammograms as Described in Example 2
E.3-3. Content Tree Root of Example 2 Content Tree
E.3-4. Image Library Branch of Example 2 Content Tree
E.3-5. CAD Processing and Findings Summary Bifurcation of Example 2 Content Tree
E.3-6. Individual Impression/Recommendation 1.2.1 from Example 2 Content Tree
E.3-7. Single Image Finding Density 1.2.1.2.6 from Example 2 Content Tree
E.3-8. Single Image Finding Density 1.2.1.2.7 from Example 2 Content Tree
E.3-9. Individual Impression/Recommendation 1.2.2 from Example 2 Content Tree
E.3-10. Individual Impression/Recommendation 1.2.3 from Example 2 Content Tree
E.3-11. Individual Impression/Recommendation 1.2.4 from Example 2 Content Tree
E.3-12. Single Image Finding 1.2.4.2.7 from Example 2 Content Tree
E.3-13. Single Image Finding 1.2.4.2.8 from Example 2 Content Tree
E.3-14. Summary of Detections Branch of Example 2 Content Tree
E.3-15. Summary of Analyses Branch of Example 2 Content Tree
E.3-16. Mammograms as Described in Example 3
E.4-1. Free-response Receiver-Operating Characteristic (FROC) curve
F.1-1. Top Levels of Chest CAD SR Content Tree
F.1-2. Example of CAD Processing and Findings Summary Sub-Tree of Chest CAD SR Content Tree
F.2-1. Example of Use of Observation Context
F.3-1. Chest Radiograph as Described in Example 1
F.3-2. Chest Radiograph as Described in Example 2
F.3-3. Content Tree Root of Example 2 Content Tree
F.3-4. Image Library Branch of Example 2 Content Tree
F.3-5. CAD Processing and Findings Summary Portion of Example 2 Content Tree
F.3-6. Summary of Detections Portion of Example 2 Content Tree
F.3-8. Chest radiographs as Described in Example 3
F.3-9. Chest Radiograph and CT slice as described in Example 4
H-1. Workflow Diagram for Clinical Trials
I.1-1. Top Level Structure of Content Tree
I.3-1. Multiple Fetuses
I.4-1. Explicit Dependencies
I.5-1. Relationships to Images and Coordinates
I.6-1. OB Numeric Biometry Measurement group Example
I.6-2. Percentile Rank or Z-score Example
I.6-3. Estimated Fetal Weight
I.7-1. Selected Value Example
I.7-2. Selected Value with Mean Example
I.8-1. Ovaries Example
I.8-2. Follicles Example
K.3-1. Cardiac Stress-Echo Staged Protocol US Exam
K.5.5-1. Example of Uninterrupted Staged-Protocol Exam WORKFLOW
K.5.5-2. Example Staged-Protocol Exam with Unscheduled Follow-up Stages
K.5.5-3. Example Staged-Protocol Exam with Scheduled Follow-up Stages
L-1. Hemodynamics Report Structure
M.2-1. Vascular Numeric Measurement Example
N.1-1. Top Level Structure of Content
N.1-2. Echocardiography Measurement Group Example
N.5-1. IVUS Report Structure
O.1-1. Registration of Image SOP Instances
O.3-1. Stored Registration System Interaction
O.3-2. Interaction Scenario
O.3-3. Coupled Modalities
O.4-1. Spatial Registration Encoding
O.4-2. Deformable Spatial Registration Encoding
O.4-3. Spatial Fiducials Encoding
Q.1-1. Top Level of Breast Imaging Report Content Tree
Q.1-2. Breast Imaging Procedure Reported Content Tree
Q.1-3. Breast Imaging Report Narrative Content Tree
Q.1-4. Breast Imaging Report Supplementary Data Content Tree
Q.1-5. Breast Imaging Assessment Content Tree
R.1-1. System Installation with Pre-configured Configuration
R.1-2. Configuring a System when network LDAP updates are permitted
R.1-3. Configuring a system when LDAP network updates are not permitted
R.4-1. Configured Device Start up (Normal Start up)
T.1-1. Definition of Left and Right in the Case of Quantitative Arterial Analysis
T.2-1. Definition of Diameter Symmetry with Arterial Plaques
T.3-1. Landmark Based Wall Motion Regions
T.3-2. Example of Centerline Wall Motion Template Usage
T.3-3. Radial Based Wall Motion Region
T.5-1. Artery Horizontal
T.5-2. Artery 45º Angle
U.1.8-1. Anatomical Landmarks and References of the Left Ocular Fundus
U.2-1. Typical Sequence of Events
U.3-1. Schematic representation of the human eye
U.3-2. Tomography of the anterior segment showing a cross section through the cornea
U.3-3. Example tomogram of the retinal nerve fiber layer with a corresponding fundus image
U.3-4. Example of a macular scan showing a series of B-scans collected at six different angles
U.3-5. Example 3D reconstruction
U.3-6. Longitudinal OCT Image with Reference Image (inset)
U.3-7. Superimposition of Longitudinal Image on Reference Image
U.3-8. Transverse OCT Image
U.3-9. Correlation between a Transverse OCT Image and a Reference Image Obtained Simultaneously
U.3-10. Correspondence between Reconstructed Transverse and Longitudinal OCT Images
U.3-11. Reconstructed Transverse and Side Longitudinal Images
V.1-1. Spatial layout of screens for workstations in Example Scenario
V.1-2. Sequence diagram for Example Scenario
V.2-1. Hanging Protocol Internal Process Model
V.2-2. Example Process Flow
V.3-1. Chest X-Ray Hanging Protocol Example
V.4-1. Neurosurgery Planning Hanging Protocol Example
V.4.3-1. Group #1 is CT only display (current CT)
V.4.3-2. Group #2 is MR only display
V.4.3-3. Group #3 is combined MR & CT
V.4.3-4. Group #4 is combined CT new & CT old
V.6-1. Display Set Patient Orientation Example
X.1-1. Dictation/Transcription Reporting Data Flow
X.1-2. Reporting Data Flow with Image References
X.1-3. Reporting Data Flow with Image and Presentation/Annotation References
X.2-1. Transcribed Text Content Tree
X.2-2. Inputs to SR Basic Text Object Content Tree
X.3-1. CDA Section with DICOM Object References
Y-1. Linear Window Center and Width
Y-2. H-D Curve
Y-3. Sigmoid LUT
Z-1. Coordinates of a Point "P" in the Isocenter and Table coordinate systems
AA.3-1. Basic Dose Reporting
AA.3-2. Dose Reporting for Non-Digital Imaging
AA.3-3. Dose Reporting Post-Processing
CC.1-1. Example of Storage Commitment Push Model SOP Class
CC.1-3. Example of Remote Storage of SOP Instances
CC.1-4. Example of Storage Commitment in Conjunction with Storage Media
DD.1-1. Modality Worklist Message Flow Example
FF.1-1. Top Level Structure of Content Tree
FF.2-1. CT/MR Cardiovascular Analysis Report
FF.2-2. Vascular Morphological Analysis
FF.2-3. Vascular Functional Analysis
FF.2-4. Ventricular Analysis
FF.2-5. Vascular Lesion
HH-1. Segment Sequence Structure and References
JJ.2-1. Surface Mesh Tetrahedron
NN.3-1. Extension of DICOM E-R Model for Specimens
NN.4-1. Sampling for one specimen per container
NN.4-2. Container with two specimens from same parent
NN.4-3. Sampling for two specimens from different ancestors
NN.4-4. Two specimens smears on one slide
NN.4-5. Sampling for TMA Slide
OO-1. Intra-oral Full Mouth Series Structured Display
OO-2. Cephalometric Series Structured Display
OO-3. Ophthalmic Retinal Study Structured Display
OO-4. OCT Retinal Study with Cross Section and Navigation Structured Display
OO-5. Stress Echocardiography Structured Display
OO-6. Stress-Rest Nuclear Cardiography Structured Display
OO-7. Mammography Structured Display
PP.3-1. Types of 3D Ultrasound Source and Derived Images
QQ.1-1. Example 1
QQ.1-2. Example 2
QQ.1-3. Example 3
QQ.1-4. Example 4
QQ.1-5. Example 5
QQ.1-6. Example 6
QQ.1-7. Example 7
SS.1-1. Top Levels of Colon CAD SR Content Tree
SS.2-1. Example of Use of Observation Context
SS.3-1. Colon Radiograph as Described in Example 1
SS.3-2. Colon radiograph as Described in Example 2
SS.3-3. Content Tree Root of Example 2 Content Tree
SS.3-4. CAD Processing and Findings Summary Portion of Example 2 Content Tree
SS.3-5. Summary of Detections Portion of Example 2 Content Tree
SS.3-7. Colon radiographs as Described in Example 3
TT-1. Stress Testing Report Template
UU.3-1. OPT B-scan with Layers and Boundaries Identified
UU.5-1. Macular Grid Thickness Report Display Example
UU.5-2. - ETDRS GRID Layout
VV.1-1. Top Level Structure of Content
VV.2-1. Pediatric, Fetal and Congenital Cardiac Ultrasound Measurement Group Example
YY-1. Compound Graphic 'AXIS'
YY-2. Combined Graphic Object 'DistanceLine'
ZZ.1-1. Implant Template Mating (Example).
ZZ.1-2. Implant Template Mating Feature IDs (Example)
ZZ.1-3. 2D Mating Feature Coordinates Sequence (Example).
ZZ.1-4. Implant Assembly Template (Example)
ZZ.3-1. Implant Templates used in the Example.
ZZ.3-2. Cup is Aligned with Patient's Acetabulum using 2 Landmarks
ZZ.3-3. Stem is Aligned with Patient's Femur.
ZZ.3-4. Femoral and Pelvic Side are Registered.
ZZ.3-5. Rotational Degree of Freedom
ZZ.5-1. Implant Versions and Derivation.
AAA.1-1. Implantation Plan SR Document basic content tree
AAA.2-1. Implantation Plan SR Document and Implant Template Relationship Diagram
AAA.3-1. Total Hip Replacement Components
AAA.4-1. Spatial Relations of Implant, Implant Template, Bite Plate and Patient CT
BBB.3.1.1-1. Treatment Delivery Normal Flow - Internal Verification Message Sequence
BBB.3.2.1-1. Treatment Delivery Normal Flow - External Verification Message Sequence
BBB.3.3.1-1. Treatment Delivery Message Sequence - Override or Additional Information Required
BBB.3.4.1-1. Treatment Delivery Message Sequence - Machine Adjustment Required
CCC.2-1. Sagittal Diagram of Eye Anatomy (when the lens turns opaque it is called a cataract)
CCC.2-2. Eye with a cataract
CCC.2-3. Eye with Synthetic Intraocular Lens Placed After Removal of Cataract
CCC.3-1. Scan Waveform Example
CCC.4-1. Waveform Output of a Partial Coherence Interferometry (PCI) Device Example
CCC.5-1. IOL Calculation Results Example
DDD.2-1. Schematic Representation of the Human Eye
DDD.2-2. Sample Report from an Automated Visual Field Machine
DDD.2-3. Information Related to Test Reliability
DDD.2-4. Sample Output from an Automated VF Machine Including Raw Sensitivity Values (Left, Larger Numbers are Better) and an Interpolated Gray-Scale Image
DDD.2-5. Examples of Age Corrected Deviation from Normative Values (upper left) and Mean Defect Corrected Deviation from Normative Data (upper right)
DDD.2-6. Example of Visual Field Loss Due to Damage to the Occipital Cortex Because of a Stroke
DDD.2-7. Example of Diffuse Defect
DDD.2-8. Example of Local Defect
EEE.2-1. Z Offset Correction
EEE.2-2. Polar to Cartesian Conversion
EEE.3-1. IVUS Image with Vertical Longitudinal View
EEE.3-2. IVOCT Image with Horizontal Longitudinal View
EEE.3-3. Longitudinal Reconstruction
FFF.1.1-1. Time Relationships of a Multi-frame Image
FFF.1.1-2. Time Relationships of one Frame
FFF.1.2-1. Acquisition Steps Influencing the Geometrical Relationship Between the Patient and the Pixel Data
FFF.1.2-2. Point P Defined in the Patient Orientation
FFF.1.2-3. Table Coordinate System
FFF.1.2-4. At1: Table Horizontal Rotation Angle
FFF.1.2-5. At2: Table Head Tilt Angle
FFF.1.2-6. At3: Table Cradle Tilt Angle
FFF.1.2-7. Point P in the Table and Isocenter Coordinate Systems
FFF.1.2-8. Projection of a Point of the Positioner Coordinate System
FFF.1.2-9. Physical Detector and Field of View Areas
FFF.1.2-10. Field of View Image
FFF.1.2-11. Examples of Field of View Rotation and Horizontal Flip
FFF.1.4-1. Example of X-Ray Current Per-Frame of the X-Ray Acquisition
FFF.1.5-1. Examples of Image Processing prior to the Pixel Data Storage
FFF.1.5-2. Example of Manufacturer-Dependent Subtractive Pipeline with Enhanced XA
FFF.2.1-1. Scenario of ECG Recording at Acquisition Modality
FFF.2.1-2. Example of ECG Recording at Acquisition Modality
FFF.2.1-3. Attributes of ECG Recording at Acquisition Modality
FFF.2.1-4. Example of ECG information in the Enhanced XA image
FFF.2.1-5. Attributes of Cardiac Synchronization in ECG Recording at Acquisition Modality
FFF.2.1-6. Scenario of Multi-modality Waveform Synchronization
FFF.2.1-7. Example of Multi-modality Waveform Synchronization
FFF.2.1-8. Attributes of Multi-modality Waveform NTP Synchronization
FFF.2.1-9. Scenario of Multi-modality Waveform Synchronization
FFF.2.1-10. Example of Image Modality as Source of Trigger
FFF.2.1-11. Attributes when Image Modality is the Source of Trigger
FFF.2.1-12. Example of Waveform Modality as Source of Trigger
FFF.2.1-13. Attributes when Waveform Modality is the Source of Trigger
FFF.2.1-14. Detector Trajectory during Rotational Acquisition
FFF.2.1-15. Attributes of X-Ray Positioning Per-frame on Rotational Acquisition
FFF.2.1-16. Table Trajectory during Table Stepping
FFF.2.1-17. Example of table positions per-frame during table stepping
FFF.2.1-18. Attributes of the X-Ray Table Per Frame on Table Stepping
FFF.2.1-19. Example of X-Ray Exposure Control Sensing Regions inside the Pixel Data matrix
FFF.2.1-20. Attributes of the First Example of the X-Ray Exposure Control Sensing Regions
FFF.2.1-21. Example of X-Ray Exposure Control Sensing Regions partially outside the Pixel Data matrix
FFF.2.1-22. Attributes of the Second Example of the X-Ray Exposure Control Sensing Regions
FFF.2.1-23. Schema of the Image Intensifier
FFF.2.1-24. Generation of the Stored Image from the Detector Matrix
FFF.2.1-25. Attributes of the Example of Field of View on Image Intensifier
FFF.2.1-26. Attributes of the First Example of Field of View on Digital Detector
FFF.2.1-27. Attributes of the Second Example of Field of View on Digital Detector
FFF.2.1-28. Attributes of the Third Example of Field of View on Digital Detector
FFF.2.1-29. Example of contrast agent injection
FFF.2.1-30. Attributes of Contrast Agent Injection
FFF.2.2-1. Attributes of the Example of the Variable Frame-rate Acquisition with Skip Frames
FFF.2.3-1. Example of usage of Photometric Interpretation
FFF.2.3-2. Attributes of Mask Subtraction and Display
FFF.2.3-3. Example of Shared Frame Pixel Shift Macro
FFF.2.3-4. Example of Per-Frame Frame Pixel Shift Macro
FFF.2.3-5. Example of Per-Frame Frame Pixel Shift Macro for Multiple Shifts
FFF.2.4-1. Attributes of X-Ray Projection Pixel Calibration
FFF.2.4-2. Example of various successive derivations
FFF.2.4-3. Attributes of the Example of Various Successive Derivations
FFF.2.4-4. Example of Derivation by Square Root Transformation
FFF.2.4-5. Attributes of the Example of Derivation by Square Root Transformation
FFF.2.5-1. Attributes of the example of tracking an object of interest on multiple 2D images
GGG.2-1. Diagram of Typical Pull Workflow
GGG.3-1. Diagram of Reporting Workflow
GGG.4-1. Diagram of Third Party Cancel
GGG.5-1. Diagram of Radiation Therapy Planning Push Workflow
GGG.5-2. Diagram of Remote Monitoring and Cancel
GGG.6-1. Diagram of X-Ray Clinic Push Workflow
III.2-1. Macular Example Mapping
III.3-1. RNFL Example Mapping
III.4-1. Macula Edema Thickness Map Example
III.4-2. Macula Edema Probability Map Example
III.6-1. Observable Layer Structures
JJJ.1-1. Optical Surface Scan Relationships
JJJ.2-1. One Single Shot Without Texture Acquisition As Point Cloud
JJJ.3-1. One Single Shot With Texture Acquisition As Mesh
JJJ.4-1. Storing Modified Point Cloud With Texture As Mesh
JJJ.5-1. Multishot Without Texture As Point Clouds and Merged Mesh
JJJ.6-1. Multishot With Two Texture Per Point Cloud
JJJ.7-1. Using Colored Vertices Instead of Texture
JJJ.9-1. Referencing A Texture From Another Series
KKK-1. Heterogeneous environment with conversion between single and multi-frame objects
NNN.2-1. Scale and Color Palette for Corneal Topography Maps
NNN.3-1. Placido Ring Image Example
NNN.3-2. Corneal Topography Axial Power Map Example
NNN.3-3. Corneal Topography Instantaneous Power Map Example
NNN.3-4. Corneal Topography Refractive Power Map Example
NNN.3-5. Corneal Topography Height Map Example
NNN.4-1. Contact Lens Fitting Simulation Example
NNN.5-1. Corneal Axial Topography Map of keratoconus (left) with its Wavefront Map showing higher order (HO) aberrations (right)
OOO-1. Workflow for a "Typical" Nuclear Medicine or PET Department
OOO-2. Hot Lab Management System as the RRD Creator
OOO-3. Workflow for a Non-imaging Procedure
OOO-4. Workflow for an Infusion System or a Radioisotope Generator
OOO-5. UML Sequence Diagram for Typical Workflow
OOO-6. UML Sequence Diagram for when Radiopharmaceutical and the Modality are Started at the Same Time
OOO-7. Radiopharmaceutical and Radiopharmaceutical Component Identification Relationship
PPP.2.1-1. Example of System Status and Configuration Message Sequencing
PPP.3.1-1. A Typical Display System
PPP.3.2-1. A Tablet Display System
TTT.1.1-1. Process flow of the X-Ray 3D Angiographic Volume Creation
TTT.1.2-1. Relationship between the creation of 2D and 3D Instances
TTT.2.1-1. Encoding of a 3D reconstruction from all the frames of a rotational acquisition
TTT.2.1-2a. Attributes of 3D Reconstruction using all frames
TTT.2.1-2b. Attributes of 3D Reconstruction using all frames (continued)
TTT.2.2-1. Encoding of one 3D reconstruction from a sub-set of projection frames
TTT.2.2-2. Attributes of 3D Reconstruction using every 5th frame
TTT.2.3-1. Encoding of two 3D reconstructions of different regions of the anatomy
TTT.2.3-2. Attributes of 3D Reconstruction of the full field of view of the projection frames
TTT.2.3-3. Attributes of 3D Reconstruction using a sub-region of all frames
TTT.2.4-1. Encoding of one 3D reconstruction from three rotational acquisitions in one instance
TTT.2.4-2. Encoding of one 3D reconstruction from two rotational acquisitions in two instances
TTT.2.4-3. Attributes of 3D Reconstruction using multiple rotation images
TTT.2.5-1. Encoding of various 3D reconstructions at different cardiac phases
TTT.2.5-2. Common Attributes of 3D Reconstruction of Three Cardiac Phases
TTT.2.5-3. Per-Frame Attributes of 3D Reconstruction of Three Cardiac Phases
TTT.2.6-1. Encoding of two 3D reconstructions at different steps of the intervention
TTT.2.6-2. One frame of two 3D reconstructions at two different table positions
TTT.2.6-3. Attributes of the pre-intervention 3D reconstruction
TTT.2.6-4. Attributes of the post-intervention 3D reconstruction
TTT.2.7-1. Rotational acquisition and the corresponding 3D reconstruction
TTT.2.7-2. Static Enhanced XA acquisition at different table position
TTT.2.7-3. Encoding of a 3D reconstruction and a registered 2D projection
TTT.2.7-4. Image Position of the slice related to an application-defined patient coordinates
TTT.2.7-5. Transformation from patient coordinates to Isocenter coordinates
TTT.2.7-6. Transformation of the patient coordinates relative to the Isocenter coordinates
TTT.2.7-7. Attributes of the pre-intervention 3D reconstruction
TTT.2.7-8. Attributes of the Enhanced XA during the intervention
UUU.1-1. Ultra-wide field image of a human retina in stereographic projection
UUU.1.2-1. Stereographic projection example
UUU.1.2-2. Image taken on-axis, i.e., centered on the fovea
UUU.1.2-3. Image acquired superiorly-patient looking up
UUU.1.2-4. Fovea in the center and clearly visible
UUU.1.2-5. Fovea barely visible, but the transformation ensures it is still in the center
UUU.1.2-6. Example of a polygon on the service of a sphere
UUU.1.3-1. Map pixel to 3D coordinate
UUU.1.3-2. Measure the Length of a Path
WWW-1. Two Example Track Sets. "Track Set Left" with two tracks, "Track Set Right" with one track.
XXX.1-1. Scope of Volumetric Presentation States
XXX.3.1-1. Simple Planar MPR Pipeline
XXX.3.2-1. Three orthogonal MPR views. From left to right transverse, coronal, sagittal
XXX.3.3-1. Definition of a range of oblique transverse Planar MPR views on sagittal view of head scan for creation of derived images
XXX.3.3-2. One Volumetric Presentations States is created for each of the MPR views. The VPS Instances have the same value of Presentation Display Collection UID (0070,1101)
XXX.3.4-1. Additional MPR views are generated by moving the view that is defined in the VPS in Animation Step Size (0070,1A05) steps perpendicular along the curve
XXX.3.5-1. Needle trajectory on a Planar MPR view
XXX.3.6-1. Planar MPR View with Lung Nodules Colorized by Category
XXX.3.6-2. Planar MPR VPS Pipeline for Colorizing the Lung Nodule Categories
XXX.3.6-3. Lung nodule example pipeline
XXX.3.7-1. Planar MPR Views of an Ultrasound Color Flow Volume
XXX.3.7-2. Planar MPR VPS Pipeline for Ultrasound Color Flow
XXX.3.8-1. Blending with Functional Data
XXX.3.8-2. Planar MPR VPS Pipeline for PET/CT Blending
XXX.3.8-3. PET/CT Classification and Compositing Details
XXX.3.9-1. Stent Stabilization
XXX.5-1. Weighting LUTs for Fixed Proportional Composting
XXX.5-2. Weighting LUTs for Partially Transparent A Over B Compositing
XXX.5-3. Weighting LUTs for Pass-Through Compositing
XXX.5-4. Weighting LUTs for Threshold Composting
XXX.6-1. One Input To P-Values Output
XXX.6-2. One Input to PCS-Values Output
XXX.6-3. Two Inputs to PCS-Values Output
XXX.6-4. Three Inputs to PCS-Values Output
XXX.6-5. VPS Display Pipeline Equivalent to the Enhanced Blending and Display Pipeline for P-Values
XXX.6-6. VPS Display Pipeline Equivalent to the Enhanced Blending and Display Pipeline for PCS-Values
AAAA.1.1-1. Protocol Storage Use Cases
BBBB.1-1. Color Parametric Map on top of an anatomical image
BBBB.1-2. Color Parametric Map with threshold applied on top of an anatomical image
BBBB.1-3. Resulting Color LUT Spring
DDDD.2-1. Matching Intended Quantity with Measurement Definition
DDDD.2-2. Result of Unclear or Ambiguous Measurement Definition
DDDD.3-1. Inadequate Definition of Non-Standard Measurement

List of Tables

C.6-1. Correspondence Between DICOM and HL7 Channel Definition
K.4-1. Attributes That Convey Staged Protocol Related Information
K.5-1. Staged Protocol Image Attributes Example
K.5-2. Comparison Of Protocol And Extra-Protocol Image Attributes Example
Q.2-1. Breast Image Report Content for Example 1
Q.2-2. Breast Imaging Report Content for Example 2
Q.2-3. Breast Imaging Report Content for Example 3
Q.2-4. Breast Imaging Report Content for Example 4
X.3-1. WADO Reference in an HL7 CDA <linkHtml>
X.3-2. DICOM Study Reference in an HL7 V3 Act (CDA Act Entry)
X.3-3. DICOM Series Reference in an HL7 V3 Act (CDA Act Entry)
X.3-4. Modality Qualifier for The Series Act.Code
X.3-5. DICOM Composite Object Reference in an HL7 V3 Act (CDA Observation Entry)
X.3-6. WADO Reference in an HL7 DGIMG Observation.Text
FF.3-1. Example #1 Report Encoding
II-1. Contrast/Bolus Module Attribute Mapping
II-2. Enhanced Contrast/Bolus Module Attribute Mapping
II-3. Device Module Attribute Mapping
II-4. Intervention Module Attribute Mapping
NN.6-1. Specimen Module for Gross Specimen
NN.6-2. Specimen Preparation Sequence for Gross Specimen
NN.6-3. Specimen Module for a Slide
NN.6-4. Specimen Preparation Sequence for Slide
OO.1.1-1. Hanging Protocol Names for Dental Image Layout based on JSOMR classification
QQ.1-1. Enhanced US Data Type Blending Examples (Informative)
RR-1. Reference Table for Use with Traditional Charts
RR-2. Reference Table for Use with ETDRS Charts or Equivalent
YY-1. Graphic Annotation Module Attributes
YY-2. Graphic Annotation Module Attributes
YY-3. Graphic Group Module
YY-4. Graphic Annotation Module Attributes
ZZ.4-1. Attributes Used to Describe a Mono Stem Implant for Total Hip Replacement
ZZ.4-2. Attributes Used to Describe a Mono Cup Implant for Total Hip Replacement
ZZ.4-3. Attributes Used to Describe The Assembly of Cup and Stem
AAA.3-1. Total Hip Replacement Example
AAA.3-2. Dental Drilling Template Example
FFF.2.1-1. Enhanced X-Ray Angiographic Image IOD Modules
FFF.2.1-2. Enhanced XA Image Functional Group Macros
FFF.2.1-3. Synchronization Module Recommendations
FFF.2.1-4. Cardiac Synchronization Module Recommendations
FFF.2.1-5. Enhanced XA/XRF Image Module Recommendations
FFF.2.1-6. Frame Content Macro Recommendations
FFF.2.1-7. General ECG IOD Modules
FFF.2.1-8. General Series Module Recommendations
FFF.2.1-9. Synchronization Module Recommendations
FFF.2.1-10. Waveform Identification Module Recommendations
FFF.2.1-11. Waveform Module Recommendations
FFF.2.1-12. Enhanced X-Ray Angiographic Image IOD Modules
FFF.2.1-13. Enhanced XA Image Functional Group Macros
FFF.2.1-14. Synchronization Module Recommendations
FFF.2.1-15. Frame Content Macro Recommendations
FFF.2.1-16. Waveform IOD Modules
FFF.2.1-18. Waveform Identification Module Recommendations
FFF.2.1-19. Enhanced X-Ray Angiographic Image IOD Modules
FFF.2.1-20. Enhanced XA Image Functional Group Macros
FFF.2.1-21. Synchronization Module Recommendations
FFF.2.1-22. Enhanced XA/XRF Image Module Recommendations
FFF.2.1-23. Frame Content Macro Recommendations
FFF.2.1-24. Waveform IOD Modules
FFF.2.1-25. Synchronization Module Recommendations
FFF.2.1-26. Waveform Identification Module Recommendations
FFF.2.1-27. Waveform Module Recommendations
FFF.2.1-28. Enhanced X-Ray Angiographic Image IOD Modules
FFF.2.1-29. Enhanced XA Image Functional Group Macros
FFF.2.1-30. XA/XRF Acquisition Module Example
FFF.2.1-31. X-Ray Positioner Macro Example
FFF.2.1-32. X-Ray Isocenter Reference System Macro Example
FFF.2.1-33. Enhanced X-Ray Angiographic Image IOD Modules
FFF.2.1-34. Enhanced XA Image Functional Group Macros
FFF.2.1-35. XA/XRF Acquisition Module Example
FFF.2.1-36. X-Ray Table Position Macro Example
FFF.2.1-37. X-Ray Isocenter Reference System Macro Example
FFF.2.1-38. Enhanced XA Image Functional Group Macros
FFF.2.1-39. X-Ray Exposure Control Sensing Regions Macro Recommendations
FFF.2.1-40. Enhanced X-Ray Angiographic Image IOD Modules
FFF.2.1-41. Enhanced XA Image Functional Group Macros
FFF.2.1-42. XA/XRF Acquisition Module Recommendations
FFF.2.1-43. X-Ray Detector Module Recommendations
FFF.2.1-44. X-Ray Field of View Macro Recommendations
FFF.2.1-45. XA/XRF Frame Pixel Data Properties Macro Recommendations
FFF.2.1-46. Enhanced X-Ray Angiographic Image IOD Modules
FFF.2.1-47. Enhanced XA Image Functional Group Macros
FFF.2.1-48. Contrast/Bolus Usage Macro Recommendations
FFF.2.1-49. Enhanced X-Ray Angiographic Image IOD Modules
FFF.2.1-50. Enhanced XA Image Functional Group Macros
FFF.2.1-51. XA/XRF Acquisition Module Recommendations
FFF.2.1-52. X-Ray Frame Acquisition Macro Recommendations
FFF.2.2-1. Enhanced X-Ray Angiographic Image IOD Modules
FFF.2.2-2. XA/XRF Multi-frame Presentation Module Recommendations
FFF.2.3-1. Enhanced X-Ray Angiographic Image IOD Modules
FFF.2.3-2. Enhanced XA Image Functional Group Macros
FFF.2.3-3. Enhanced XA/XRF Image Module Recommendations
FFF.2.3-4. Enhanced X-Ray Angiographic Image IOD Modules
FFF.2.3-5. Mask Module Recommendations
FFF.2.3-6. Enhanced X-Ray Angiographic Image IOD Modules
FFF.2.3-7. Enhanced XA Image Functional Group Macros
FFF.2.3-8. Mask Module Recommendations
FFF.2.3-9. Frame Pixel Shift Macro Recommendations
FFF.2.4-1. Enhanced X-Ray Angiographic Image IOD Modules
FFF.2.4-2. Enhanced XA Image Functional Group Macros
FFF.2.4-3. XA/XRF Acquisition Module Recommendations
FFF.2.4-4. XA/XRF Frame Pixel Data Properties Macro Recommendations
FFF.2.4-5. X-Ray Projection Pixel Calibration Macro Recommendations
FFF.2.4-6. Enhanced X-Ray Angiographic Image IOD Modules
FFF.2.4-7. Enhanced XA Image Functional Group Macros
FFF.2.4-8. Enhanced XA/XRF Image Module Recommendations
FFF.2.4-9. Derivation Image Macro Recommendations
FFF.2.4-10. XA/XRF Frame Characteristics Macro Recommendations
FFF.2.4-11. XA/XRF Frame Pixel Data Properties Macro Recommendations
FFF.2.5-1. Enhanced X-Ray Angiographic Image IOD Modules
FFF.2.5-2. Enhanced XA Image Functional Group Macros
FFF.2.5-3. XA/XRF Acquisition Module Recommendations
GGG.1-1. SOP Classes for Typical Implementation Examples
HHH.1-1. Summary of DICOM/Rendered URI Based WADO Parameters
HHH.1-2. Summary of "DICOM Requester" WADO-WS Parameters
HHH.1-3. Summary of "Rendered Requester" WADO-WS Parameters
HHH.1-4. Summary of "Metadata Requester" WADO-WS Parameters
PPP.3.1-1. N-GET Request/Response Example
PPP.3.1-2. Example of N-GET Request/Response for QA Result Module
PPP.3.2-1. N-GET Request/Response Example
RRR.1-1. Volumetric ROI on CT Example
RRR.2-1. Volumetric ROI on CT Example
RRR.3-1. Planar ROI on DCE-MR Example
RRR.4-1. SUV ROI on FDG PET Example
SSS.1-1. Image Library for PET-CT Example
TTT.2.1-1. General and Enhanced Series Modules Recommendations
TTT.2.1-2. Frame of Reference Module Recommendations
TTT.2.1-3. Enhanced Contrast/Bolus Module Recommendations
TTT.2.1-4. Multi-frame Dimensions Module Recommendations
TTT.2.1-5. Patient Position to Orientation Conversion Recommendations
TTT.2.1-6. X-Ray 3D Image Module Recommendations
TTT.2.1-7. X-Ray 3D Angiographic Image Contributing Sources Module Recommendations
TTT.2.1-8. X-Ray 3D Angiographic Acquisition Module Recommendations
TTT.2.1-9. Frame Content Macro Recommendations
TTT.2.2-1. X-Ray 3D Angiographic Acquisition Module Recommendations
TTT.2.2-2. Frame Content Macro Recommendations
TTT.2.3-1. Frame of Reference Module Recommendations
TTT.2.3-2. Pixel Measures Macro Recommendations
TTT.2.3-3. Frame Content Macro Recommendations
TTT.2.4-1. Frame of Reference Module Recommendations
TTT.2.4-2. X-Ray 3D Angiographic Image Contributing Sources Module Recommendations
TTT.2.4-3. X-Ray 3D Angiographic Acquisition Module Recommendations
TTT.2.4-4. Frame Content Macro Recommendations
TTT.2.5-1. Multi-frame Dimension Module Recommendations
TTT.2.5-2. X-Ray 3D Angiographic Acquisition Module Recommendations
TTT.2.5-3. X-Ray 3D Reconstruction Module Recommendations
TTT.2.5-4. Frame Content Macro Recommendations
TTT.2.5-5. Cardiac Synchronization Macro Recommendations
TTT.2.6-1. Frame of Reference Module Recommendations
TTT.2.6-2. Pixel Measures Macro Recommendations
TTT.2.7-1. Image-Equipment Coordinate Relationship Module Recommendations
WWW-1. Example of the Tractography Results Module
XXX.3.1-1. Volumetric Presentation State Relationship Module Recommendations
XXX.3.1-2. Volumetric Presentation State Display Module Recommendations
XXX.3.2-1. Volumetric Presentation State Identification Module Recommendations
XXX.3.2-2. Volumetric Presentation State Relationship Module Recommendations
XXX.3.2-3. Presentation View Description Module Recommendations
XXX.3.3-1. Volumetric Presentation State Identification Module Recommendations
XXX.3.4-1. Presentation Animation Module Recommendations
XXX.3.5-1. Volumetric Graphic Annotation Module Recommendations
XXX.3.6-1. Volumetric Presentation State Relationship Module Recommendations
XXX.3.6-2. Volumetric Presentation State Cropping Module Recommendations
XXX.3.6-3. Volumetric Presentation State Display Module Recommendations
XXX.3.7-1. Volumetric Presentation State Relationship Module Recommendations
XXX.3.7-2. Presentation View Description Module Recommendations
XXX.3.7-3. Multi-Planar Reconstruction Geometry Module Recommendations
XXX.3.7-4. Volumetric Presentation State Display Module Recommendations
XXX.3.8-1. Volumetric Presentation State Relationship Module Recommendations
XXX.3.8-3. Volumetric Presentation State Display Module Recommendations
XXX.3.9-1. Volumetric Presentation State Identification Module Recommendations
XXX.3.9-2. Volumetric Presentation State Relationship Module Recommendations
XXX.3.9-3. Presentation View Description Module Recommendations
XXX.3.9-4. Presentation Animation Module Recommendations
XXX.4.1-1. Hanging Protocol Image Set Sequence Recommendations
ZZZ.1-1. Content Assessment Results Module Example of a RT Plan Treatment Assessment
AAAA.2-1. Routine Adult Head - Context
AAAA.2-2. Routine Adult Head - Details - Scantech
AAAA.2-2a. Patient Specification
AAAA.2-2b. First Acquisition Protocol Element Specification
AAAA.2-2c. Second Acquisition Protocol Element Specification
AAAA.2-2d. First Reconstruction Protocol Element Specification
AAAA.2-3. AAPM Routine Brain Details - Acme
AAAA.2-3a. Patient Specification
AAAA.2-3b. First Acquisition Protocol Element Specification
AAAA.2-3c. Second Acquisition Protocol Element Specification
AAAA.2-3d. Third Acquisition Protocol Element Specification
AAAA.2-3e. First Reconstruction Protocol Element Specification
AAAA.2-3f. Second Reconstruction Protocol Element Specification
AAAA.2-3g. First Storage Protocol Element Specification
AAAA.2-3h. Second Storage Protocol Element Specification
AAAA.2-3i. Third Storage Protocol Element Specification
AAAA.3-1. CT Tumor Volumetric Measurement - Context
AAAA.3-2. CT Tumor Volumetric Measurement - Details - Acme
AAAA.3-2a. First Acquisition Protocol Element Specification
AAAA.3-2b. Second Acquisition Protocol Element Specification
AAAA.3-2c. First Reconstruction Protocol Element Specification
BBBB.2-1. Example data for the Floating Point Image Pixel Module
BBBB.2-2. Example data for the Dimension Organization Module
BBBB.2-3. Example data for the Pixel Measures Macro
BBBB.2-4. Example data for the Frame Content Macro
BBBB.2-5. Example data for the Identity Pixel Value Transformation Macro
BBBB.2-6. Example data for the Frame VOI LUT With LUT Macro
BBBB.2-7. Example data for the Real World Value Mapping Macro
BBBB.2-8. Example data for the Palette Color Lookup Table Module
BBBB.2-9. Example data for the Stored Value Color Range Macro
BBBB.2-10. Example data for the Parametric Map Frame Type Macro

List of Examples

Q.2-1. Report Sample: Narrative Text Only
Q.2-2. Report Sample: Narrative Text with Minimal Supplementary Data
Q.2-3. Report Sample: Narrative Text with More Extensive Supplementary Data
Q.2-4. Report Sample: Multiple Procedures, Narrative Text with Some Supplementary Data
BB.1-1. Simple Example of Print Management SCU Session
FF.3-1. Presentation of Report Example #1
WW.1-1. Sample Audit Event Report

Notice and Disclaimer

The information in this publication was considered technically sound by the consensus of persons engaged in the development and approval of the document at the time it was developed. Consensus does not necessarily mean that there is unanimous agreement among every person participating in the development of this document.

NEMA standards and guideline publications, of which the document contained herein is one, are developed through a voluntary consensus standards development process. This process brings together volunteers and/or seeks out the views of persons who have an interest in the topic covered by this publication. While NEMA administers the process and establishes rules to promote fairness in the development of consensus, it does not write the document and it does not independently test, evaluate, or verify the accuracy or completeness of any information or the soundness of any judgments contained in its standards and guideline publications.

NEMA disclaims liability for any personal injury, property, or other damages of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, application, or reliance on this document. NEMA disclaims and makes no guaranty or warranty, expressed or implied, as to the accuracy or completeness of any information published herein, and disclaims and makes no warranty that the information in this document will fulfill any of your particular purposes or needs. NEMA does not undertake to guarantee the performance of any individual manufacturer or seller's products or services by virtue of this standard or guide.

In publishing and making this document available, NEMA is not undertaking to render professional or other services for or on behalf of any person or entity, nor is NEMA undertaking to perform any duty owed by any person or entity to someone else. Anyone using this document should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances. Information and other standards on the topic covered by this publication may be available from other sources, which the user may wish to consult for additional views or information not covered by this publication.

NEMA has no power, nor does it undertake to police or enforce compliance with the contents of this document. NEMA does not certify, test, or inspect products, designs, or installations for safety or health purposes. Any certification or other statement of compliance with any health or safety-related information in this document shall not be attributable to NEMA and is solely the responsibility of the certifier or maker of the statement.

Foreword

This DICOM Standard was developed according to the procedures of the DICOM Standards Committee.

The DICOM Standard is structured as a multi-part document using the guidelines established in [ISO/IEC Directives, Part 2].

PS3.1 should be used as the base reference for the current parts of this standard.

DICOM® is the registered trademark of the National Electrical Manufacturers Association for its standards publications relating to digital communications of medical information, all rights reserved.

HL7® and CDA® are the registered trademarks of Health Level Seven International, all rights reserved.

SNOMED®, SNOMED Clinical Terms®, SNOMED CT® are the registered trademarks of the International Health Terminology Standards Development Organisation (IHTSDO), all rights reserved.

LOINC® is the registered trademark of Regenstrief Institute, Inc, all rights reserved.

1 Scope and Field of Application

This part of the DICOM Standard contains explanatory information in the form of Normative and Informative Annexes.

2 Normative References

The following standards contain provisions which, through reference in this text, constitute provisions of this Standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this Standard are encouraged to investigate the possibilities of applying the most recent editions of the standards indicated below.

2.1 International Organization for Standardization (ISO) and International Electrotechnical Commission (IEC)

[ISO/IEC Directives, Part 2] ISO/IEC. 2011/04. 6.0. Rules for the structure and drafting of International Standards. http://www.iec.ch/members_experts/refdocs/iec/isoiec-dir2%7Bed6.0%7Den.pdf .

3 Definitions

For the purposes of this Standard the following definitions apply.

4 Symbols and Abbreviations

The following symbols and abbreviations are used in this Part of the Standard.

FHIR

HL7 Fast Healthcare Interoperability Resources (draft standard)

5 Conventions

Terms listed in Section 3 are capitalized throughout the document.

A Explanation of Patient Orientation (Normative)

This Annex was formerly located in Annex E “Explanation of Patient Orientation (Normative)” in PS3.3 in the 2003 and earlier revisions of the standard.

This Annex provides an explanation of how to use the patient orientation data elements.

Standard Anatomic Position Directions - Whole Body

Figure A-1. Standard Anatomic Position Directions - Whole Body


Standard Anatomic Position Directions - Hand

Figure A-2. Standard Anatomic Position Directions - Hand


Standard Anatomic Position Directions - Foot

Figure A-3. Standard Anatomic Position Directions - Foot


As for the hand, the direction labels are based on the foot in the standard anatomic position. For the right foot, for example, RIGHT will be in the direction of the 5th toe. This assignment will remain constant through movement or positioning of the extremity. This is also true of the HEAD and FOOT directions.

Views - Anterior and Lateral

Figure A-4. Views - Anterior and Lateral


Planes - Whole Body - Transverse

Figure A-5. Planes - Whole Body - Transverse


Planes - Whole Body - Sagittal

Figure A-6. Planes - Whole Body - Sagittal


Planes - Whole Body - Coronal

Figure A-7. Planes - Whole Body - Coronal


Planes - Hand

Figure A-8. Planes - Hand


Planes - Double Obliquity

Figure A-9. Planes - Double Obliquity


Standard Anatomic Position Directions - Paired Hands

Figure A-10. Standard Anatomic Position Directions - Paired Hands


Breast - MedioLateral Oblique

Figure A-11. Breast - MedioLateral Oblique


Panoramic Zonogram Directions

Figure A-12. Panoramic Zonogram Directions


B Integration of Modality Worklist and Modality Performed Procedure Step in The Original DICOM Standard (Informative)

This Annex was formerly located in Annex G “Integration of Modality Worklist and Modality Performed Procedure Step in the Original DICOM Standard (Informative)” in PS3.3 in the 2003 and earlier revisions of the standard.

DICOM was published in 1993 and effectively addresses image communication for a number of modalities and Image Management functions for a significant part of the field of medical imaging. Since then, many additional medical imaging specialties have contributed to the extension of the DICOM Standard and developed additional Image Object Definitions. Furthermore, there have been discussions about the harmonization of the DICOM Real-World domain model with other standardization bodies. This effort has resulted in a number of extensions to the DICOM Standard. The integration of the Modality Worklist and Modality Performed Procedure Step address an important part of the domain area that was not included initially in the DICOM Standard. At the same time, the Modality Worklist and Modality Performed Procedure Step integration make steps in the direction of harmonization with other standardization bodies (CEN TC 251, HL7, etc.).

The purpose of this Annex is to show how the original DICOM Standard relates to the extension for Modality Worklist Management and Modality Performed Procedure Step. The two included figures outline the void filled by the Modality Worklist Management and Modality Performed Procedure Step specification, and the relationship between the original DICOM Data Model and the extended model.

Functional View - Modality Worklist and Modality Performed Procedure Step Management in the Context of DICOM Service Classes

Figure B-1. Functional View - Modality Worklist and Modality Performed Procedure Step Management in the Context of DICOM Service Classes


The management of a patient starts when the patient enters a physical facility (e.g., a hospital, a clinic, an imaging center) or even before that time. The DICOM Patient Management SOP Class provides many of the functions that are of interest to imaging departments. Figure B-1 is an example where one presumes that an order for a procedure has been issued for a patient. The order for an imaging procedure results in the creation of a Study Instance within the DICOM Study Management SOP Class. At the same time (A) the Modality Worklist Management SOP Class enables a modality operator to request the scheduling information for the ordered procedures. A worklist can be constructed based on the scheduling information. The handling of the requested imaging procedure in DICOM Study Management and in DICOM Worklist Management are closely related. The worklist also conveys patient/study demographic information that can be incorporated into the images.

Worklist Management is completed once the imaging procedure has started and the Scheduled Procedure Step has been removed from the Worklist, possibly in response to the Modality Performed Procedure Step (B). However, Study Management continues throughout all stages of the Study, including interpretation. The actual procedure performed (based on the request) and information about the images produced are conveyed by the DICOM Study Component SOP Class or the Modality Performed Procedure Step SOP Classes.

Relationship of the Original Model and the Extensions for Modality Worklist and Modality Performed Procedure Step Management

Figure B-2. Relationship of the Original Model and the Extensions for Modality Worklist and Modality Performed Procedure Step Management


Figure B-2 shows the relationship between the original DICOM Real-World model and the extensions of this Real-World model required to support the Modality Worklist and the Modality Performed Procedure Step. The new parts of the model add entities that are needed to request, schedule, and describe the performance of imaging procedures, concepts that were not supported in the original model. The entities required for representing the Worklist form a natural extension of the original DICOM Real-World model.

Common to both the original model and the extended model is the Patient entity. The Service Episode is an administrative concept that has been shown in the extended model in order to pave the way for future adaptation to a common model supported by other standardization groups including HL7, CEN TC 251 WG 3, CAP-IEC, etc. The Visit is in the original model but not shown in the extended model because it is a part of the Service Episode.

There is a 1 to 1 relationship between a Requested Procedure and the DICOM Study (A). A DICOM Study is the result of a single Requested Procedure. A Requested Procedure can result in only one Study.

A n:m relationship exists between a Scheduled Procedure Step and a Modality Performed Procedure Step (B). The concept of a Modality Performed Procedure Step is a superset of the Study Component concept contained in the original DICOM model. The Modality Performed Procedure Step SOP Classes provide a means to relate Modality Performed Procedure Steps to Scheduled Procedure Steps.

C Waveforms (Informative)

This Annex was formerly located in Annex J “Waveforms (Informative)” in PS3.3 in the 2003 and earlier revisions of the standard.

C.1 Domain of Application

Waveform acquisition is part of both the medical imaging environment and the general clinical environment. Because of its broad use, there has been significant previous and complementary work in waveform standardization of which the following are particularly important:

ASTM E31.16 - E1467

Specification for Transferring Digital Neurophysiological Data Between Independent Computer Systems

CEN TC251 PT5-007 - prENV1064 draft

Standard Communications Protocol for Computer-Assisted Electrocardiography (SCP-ECG).

CEN TC251 PT5-021 - draft

Vital Signs Information Representation Standard (VITAL)

HL7 Automated Data SIG

HL7 Version 2.3, Chapter 7.14-20

IEEE P1073 - draft

Medical Information Bus Standard (MIB)

DICOM Section A.10 in PS3.3

Standalone Curve Information Object Definition

For DICOM, the domain of waveform standardization is waveform acquisition within the imaging context. It is specifically meant to address waveform acquisitions that will be analyzed with other data that is transferred and managed using the DICOM protocol. It allows the addition of waveform data to that context with minimal incremental cost. Further, it leverages the DICOM persistent object capability for maintaining referential relationships to other data collected in a multi-modality environment, including references necessary for multi-modality synchronization.

Waveform interchange in other clinical contexts may use different protocols more appropriate to those domains. In particular, HL7 may be used for transfer of waveform observations to general clinical information systems, and MIB may be used for real-time physiological monitoring and therapy.

The waveform information object definition in DICOM has been specifically harmonized at the semantic level with the HL7 waveform message format. The use of a common object model allows straightforward transcoding and interoperation between systems that use DICOM for waveform interchange and those that use HL7, and may be viewed as an example of common semantics implemented in the differing syntaxes of two messaging systems.

Note

HL7 allows transport of DICOM SOP Instances (information objects) encapsulated within HL7 messages. Since the DICOM and HL7 waveform semantics are harmonized, DICOM Waveform SOP Instances need not be transported as encapsulated data, as they can be transcoded to native HL7 Waveform Observation format.

C.2 Use Cases

The following are specific use case examples for waveforms in the imaging environment.

  • Case 1: Catheterization Laboratory - During a cardiac catheterization, several independent pieces of data acquisition equipment may be brought together for the exam. An electrocardiographic subsystem records surface ECG waveforms; an X-ray angiographic subsystem records motion images; a hemodynamic subsystem records intracardiac pressures from a sensor on the catheter. These subsystems send their acquired data by network to a repository. These data are assembled at an analytic workstation by retrieving from the repository. For a left ventriculographic procedure, the ECG is used by the physician to determine the time of maximum and minimum ventricular fill, and when coordinated with the angiographic images, an accurate estimate of the ejection fraction can be calculated. For a valvuloplasty procedure, the hemodynamic waveforms are used to calculate the pre-intervention and post-intervention pressure gradients.

  • Case 2: Electrophysiology Laboratory - An electrophysiological exam will capture waveforms from multiple sensors on a catheter; the placement of the catheter in the heart is captured on an angiographic image. At an analytic workstation, the exact location of the sensors can thus be aligned with a model of the heart, and the relative timing of the arrival of the electrophysiological waves at different cardiac locations can be mapped.

  • Case 3: Stress Exam - A stress exam may involve the acquisition of both ECG waveforms and echocardiographic ultrasound images from portable equipment at different stages of the test. The waveforms and the echocardiograms are output on an interchange disk, which is then input and read at a review station. The physician analyzes both types of data to make a diagnosis of cardiac health.

C.3 Time Synchronization Frame of Reference

Synchronization of acquisition across multiple modalities in a single study (e.g., angiography and electrocardiography) requires either a shared trigger, or a shared clock. A Synchronization Module within the Frame of Reference Information Entity specifies the synchronization mechanism. A common temporal environment used by multiple equipment is identified by a shared Synchronization Frame of Reference UID. How this UID is determined and distributed to the participating equipment is outside the scope of the standard.

The method used for time synchronization of equipment clocks is implementation or site specific, and therefore outside the scope of this proposal. If required, standard time distribution protocols are available (e.g., NTP, IRIG, GPS).

An informative description of time distribution methods can be found at: http://www.bancomm.com/cntpApp.htm

A second method of synchronizing acquisitions is to utilize a common reference channel (temporal fiducial), which is recorded in the data acquired from the several equipment units participating in a study, and/or that is used to trigger synchronized data acquisitions. For instance, the "X-ray on" pulse train that triggers the acquisition of frames for an X-ray angiographic SOP Instance can be recorded as a waveform channel in a simultaneously acquired hemodynamic waveform SOP Instance, and can be used to align the different object instances. Associated with this Supplement are proposed coded entry channel identifiers to specifically support this synchronization mechanism (DICOM Terminology Mapping Resource Context Group ID 3090).

C.4 Waveform Acquisition Model

Figure C.4-1 shows a canonical model of waveform data acquisition. A patient is the subject of the study. There may be several sensors placed at different locations on or in the patient, and waveforms are measurements of some physical quality (metric) by those sensors (e.g., electrical voltage, pressure, gas concentration, or sound). The sensor is typically connected to an amplifier and filter, and its output is sampled at constant time intervals and digitized. In most cases, several signal channels are acquired synchronously. The measured signal usually originates in the anatomy of the patient, but an important special case is a signal that originates in the equipment, either as a stimulus, such as a cardiac pacing signal, as a therapy, such as a radio frequency signal used for ablation, or as a synchronization signal.

Waveform Acquisition Model

Figure C.4-1. Waveform Acquisition Model


C.5 Waveform Information Model

The part of the composite information object that carries the waveform data is the Waveform Information Entity (IE). The Waveform IE includes the technical parameters of waveform acquisition and the waveform samples.

The information model, or internal organizational structure, of the Waveform IE is shown in Figure C.5-1. A waveform information object includes data from a continuous time period during which signals were acquired. The object may contain several multiplex groups, each defined by digitization with the same clock whose frequency is defined for the group. Within each multiplex group there will be one or more channels, each with a full technical definition. Finally, each channel has its set of digital waveform samples.

DICOM Waveform Information Model

Figure C.5-1. DICOM Waveform Information Model


C.6 Harmonization With HL7

This Waveform IE definition is harmonized with the HL7 waveform semantic constructs, including the channel definition attributes and the use of multiplex groups for synchronously acquired channels. The use of a common object model allows straightforward transcoding and interoperation between systems that use DICOM for waveform interchange and those that use HL7, and may be viewed as an example of common semantics implemented in the differing syntaxes of two messaging systems.

This section describes the congruence between the DICOM Waveform IE and the HL7 version 2.3 waveform message format (see HL7 version 2.3 Chapter 7, sections 7.14 - 7.20).

C.6.1 HL7 Waveform Observation

Waveforms in HL7 messages are sent in a set of OBX (Observation) Segments. Four subtypes of OBX segments are defined:

  • The CHN subtype defines one channel in a CD (Channel Definition) Data Type

  • The TIM subtype defines the start time of the waveform data in a TS (Time String) Data Type

  • The WAV subtype carries the waveform data in an NA (Numeric Array) or MA (Multiplexed Array) Data Type (ASCII encoded samples, character delimited)

  • The ANO subtype carries an annotation in a CE (Coded Entry) Data Type with a reference to a specific time within the waveform to which the annotation applies

Other segments of the HL7 message definition specify patient and study identification, whose harmonization with DICOM constructs is not defined in this Annex.

C.6.2 Channel Definition

The Waveform Module Channel Definition sequence attribute (003A,0200) is defined in harmonization with the HL7 Channel Definition (CD) Data Type, in accordance with the following Table. Each Item in the Channel Definition sequence attribute corresponds to an OBX Segment of subtype CHN.

Table C.6-1. Correspondence Between DICOM and HL7 Channel Definition

DICOM Attribute

DICOM Tag

HL7 CD Data Type Component

Waveform Channel Number

(003A,0202)

Channel Identifier (number&name)

Channel Label

(003A,0203)

Channel Source Sequence

(003A,0208)

Waveform Source

Channel Source Modifier Sequence

(003A,0209)

Channel Sensitivity

(003A,0210)

Channel Sensitivity and Units

Channel Sensitivity Units Sequence

(003A,0211)

Channel Sensitivity Correction Factor

(003A,0212)

Channel Calibration Parameters

(correctionfactor&baseline&timeskew)

Channel Baseline

(003A,0213)

Channel Time Skew

(003A,0214)

[Group] Sampling Frequency

(003A,001A)

Channel Sampling Frequency

Channel Minimum Value

(5400,0110)

Minimum and Maximum Data Values

(minimum & maximum)

Channel Maximum Value

(5400,0112)

Channel Offset

(003A,0218)

not defined in HL7

Channel Status

(003A,0205)

Filter Low Frequency

(003A,0220)

Filter High Frequency

(003A,0221)

Notch Filter Frequency

(003A,0222)

Notch Filter Bandwidth

(003A,0223)


In the DICOM information object definition, the sampling frequency is defined for the multiplex group, while in HL7 it is defined for each channel, but is required to be identical for all multiplexed channels.

Note that in the HL7 syntax, Waveform Source is a string, rather than a coded entry as used in DICOM. This should be considered in any transcoding between the two formats.

C.6.3 Timing

In HL7, the exact start time for waveform data is sent in an OBX Segment of subtype TIM. The corresponding DICOM attributes, which must be combined to form the equivalent time string, are:

Acquisition DateTime

(0008,002A)

Multiplex Group Time Offset

(0018,1068)

C.6.4 Waveform Data

The DICOM binary encoding of data samples in the Waveform Data attribute (5400,1010) corresponds to the ASCII representation of data samples in the HL7 OBX Segment of subtype WAV. The same channel-interleaved multiplexing used in the HL7 MA (Multiplexed Array) Data Type is used in the DICOM Waveform Data attribute.

Because of its binary representation, DICOM uses several data elements to specify the precise encoding, as listed in the following Table. There are no corresponding HL7 data elements, since HL7 uses explicit character-delimited ASCII encoding of data samples.

Number of Waveform Channels

(003A,0005)

Number of Waveform Samples

(003A,0010)

Waveform Bits Stored

(003A,021A)

Waveform Bits Allocated

(5400,1004)

Waveform Sample Interpretation

(5400,1006)

Waveform Padding Value

(5400,100A)

C.6.5 Annotation

In HL7, Waveform Annotation is sent in an OBX Segment of subtype ANO, using the CE (Coded Entry) Data Type CE. This corresponds precisely to the DICOM Annotation using Coded Entry Sequences. However, HL7 annotation ROI is to a single point only (time reference), while DICOM allows reference to ranges of samples delimited by time or by explicit sample position.

C.7 Harmonization With SCP-ECG

The SCP-ECG standard is designed for recording routine resting electrocardiograms. Such ECGs are reviewed prior to cardiac imaging procedures, and a typical use case would be for SCP-ECG waveforms to be translated to DICOM for inclusion with the full cardiac imaging patient record.

SCP-ECG provides for either simultaneous or non-simultaneous recording of the channels, but does not provide a multiplexed data format (each channel is separately encoded). When translating to DICOM, each subset of simultaneously recorded channels may be encoded in a Waveform Sequence Item (multiplex group), and the delay to the recording of each multiplex group shall be encoded in the Multiplex Group Time Offset (0018,1068).

The electrode configuration of SCP-ECG Section 1 may be translated to the DICOM Acquisition Context (0040,0555) sequence items using TID 3401 “ECG Acquisition Context” and Context Groups 3263 and 3264.

The lead identification of SCP-ECG Section 3, a term coded as an unsigned integer, may be translated to the DICOM Waveform Channel Source (003A,0208) coded sequence using CID 3001 “ECG Leads”.

Pacemaker spike records of SCP-ECG Section 7 may be translated to items in the Waveform Annotations Sequence (0040,B020) with a code term from CID 3335 “ECG Annotations”. The annotation sequence item may record the spike amplitude in its Numeric Value and Measurement Units attributes.

D SR Encoding Example (Informative)

This Annex was formerly located in Annex K “SR Encoding Example (Informative)” in PS3.3 in the 2003 and earlier revisions of the standard.

The following is a simple and non-comprehensive illustration of the encoding of the Informative SR Content Tree Example in PS3.3.

SR Tree Depth

Nesting

Attribute

Tag

VR

VL (hex)

Value

SOP Class UID

(0008,0016)

UI

001e

1.2.840.10008.5.1.4.1.1.88.33

SOP Instance UID

(0008,0018)

UI

0012

1.2.3.4.5.6.7.300

Study Date

(0008,0020)

DA

0008

19991029

Content Date

(0008,0023)

DA

0008

19991029

Study Time

(0008,0030)

TM

0006

154500

Content Time

(0008,0033)

TM

0006

154510

Accession Number

(0008,0050)

SH

0006

123456

Modality

(0008,0060)

CS

0002

SR

Manufacturer

(0008,0070)

LO

0004

WG6

Referring Physician's Name

(0008,0090)

PN

0014

Luke^Will^^Dr.^M.D.

Coding Scheme Identification Sequence

(0008,0110)

SQ

ffffffff

%item

Coding Scheme Designator

(0008,0102)

SH

000e

99STElsewhere

Coding Scheme UID

(0008,010C)

UI

0010

1.2.3.4.6.7.8.91

Responsible Organization

(0008,0116)

ST

0034

Informatics Dept

St Elsewhere Hosp

Boston, MA 02390

%enditem

%endseq

Referenced Performed Procedure Step Sequence

(0008,1111)

SQ

ffffffff

%endseq

Patient's Name

(0010,0010)

PN

000e

Homer^Jane^^^

Patient's ID

(0010,0020)

LO

0006

234567

Patient's Birth Date

(0010,0030)

DA

0008

19991109

Patient's Sex

(0010,0040)

CS

0002

F

Study Instance UID

(0020,000D)

UI

0012

1.2.3.4.5.6.7.100

Series Instance UID

(0020,000E)

UI

0012

1.2.3.4.5.6.7.200

Study ID

(0020,0010)

SH

0006

345678

Series Number

(0020,0011)

IS

0002

1

Instance (formerly Image) Number

(0020,0013)

IS

0002

1

1

Value Type

(0040,a040)

CS

000a

CONTAINER

1

Concept Name Code Sequence

(0040,a043)

SQ

ffffffff

1

%item

1

>

Code Value

(0008,0100)

SH

0006

333300

1

>

Coding Scheme Designator

(0008,0102)

SH

0006

LNdemo

1

>

Code Meaning

(0008,0104)

LO

000c

Chest X-Ray

1

%enditem

%endseq

1

Continuity Of Content

(0040,a050)

CS

0008

SEPARATE

Verifying Observer Sequence

(0040,a073)

SQ

ffffffff

%item

>

Verifying Organization

(0040,a027)

LO

0004

WG6

>

Verification DateTime

(0040,a030)

DT

000e

19991029154510

>

Verifying Observer Name

(0040,a075)

PN

000e

Jones^Joe^^Dr^

>

Verifying Observer Identification Code Sequence

(0040,a088)

SQ

ffffffff

%item

>>

Code Value

(0008,0100)

SH

0006

369842

>>

Coding Scheme Designator

(0008,0102)

SH

000e

99STElsewhere

>>

Code Meaning

(0008,0104)

LO

0006

369842

%enditem

%endseq

%enditem

%endseq

Referenced Request Sequence

(0040,a370)

SQ

ffffffff

%item

>

Accession Number

(0008,0050)

SH

0006

123456

>

Referenced Study Sequence

(0008,1110)

SQ

ffffffff

%endseq

>

Study Instance UID

(0020,000D)

UI

0012

1.2.3.4.5.6.7.100

>

Requested Procedure Description

(0032,1060)

LO

000a

Chest Xray

>

Requested Procedure Code Sequence

(0032,1064)

SQ

ffffffff

%item

>>

Code Value

(0008,0100)

SH

0006

369475

>>

Coding Scheme Designator

(0008,0102)

SH

000e

99STElsewhere

>>

Code Meaning

(0008,0104)

LO

000a

Chest XRay

%enditem

%endseq

>

Requested Procedure ID

(0040,1001)

SH

0006

012340

>

Placer Order Number/Imaging Service Request

(0040,2016)

LO

0

>

Filler Order Number/Imaging Service Request

(0040,2017)

LO

0

%enditem

%endseq

Performed Procedure Code Sequence

(0040,a372)

SQ

ffffffff

%item

>

Code Value

(0008,0100)

SH

0006

369475

>

Coding Scheme Designator

(0008,0102)

SH

000e

99STElsewhere

>

Code Meaning

(0008,0104)

LO

000a

Chest XRay

%enditem

%endseq

Current Requested Procedure Evidence Sequence

(0040,a375)

SQ

ffffffff

%item

>

Referenced Series Sequence

(0008,1115)

SQ

ffffffff

%item

>>

Referenced SOP Sequence

(0008,1199)

SQ

ffffffff

%item

>>>

Referenced SOP Class UID

(0008,1150)

UI

0008

1.2.3.4

>>>

Referenced SOP Instance UID

(0008,1155)

UI

000a

1.2.3.4.5

%enditem

%endseq

>>

Series Instance UID

(0020,000E)

UI

0012

1.2.3.4.5.6.7.200

%enditem

%endseq

>

Study Instance UID

(0020,000D)

UI

0012

1.2.3.4.5.6.7.100

%enditem

%endseq

Completion Flag

(0040,a491)

CS

0008

COMPLETE

Verification Flag

(0040,a493)

CS

0008

VERIFIED

1

Content Sequence

(0040,a730)

SQ

ffffffff

1.1

%item

1.1

>

Relationship Type

(0040,a010)

CS

0010

HAS OBS CONTEXT

1.1

>

Value Type

(0040,a040)

CS

0006

PNAME

1.1

>

Concept Name Code Sequence

(0040,a043)

SQ

ffffffff

1.1

%item

1.1

>>

Code Value

(0008,0100)

SH

0006

000555

1.1

>>

Coding Scheme Designator

(0008,0102)

SH

0006

LNdemo

1.1

>>

Code Meaning

(0008,0104)

LO

0012

Recording Observer

1.1

%enditem

1.1

%endseq

1.1

>

Person Name

(0040,a123)

PN

0010

Smith^John^^Dr^

1.1

%enditem

1.2

%item

1.2

>

Relationship Type

(0040,a010)

CS

0010

HAS OBS CONTEXT

1.2

>

Value Type

(0040,a040)

CS

0006

UIDREF

1.2

>

Concept Name Code Sequence

(0040,a043)

SQ

ffffffff

1.2

%item

1.2

>>

Code Value

(0008,0100)

SH

0006

000599

1.2

>>

Coding Scheme Designator

(0008,0102)

SH

0006

LNdemo

1.2

>>

Code Meaning

(0008,0104)

LO

0036

Study Instance UID of Evidence Directly Examined by RO

1.2

%enditem

1.2

%endseq

1.2

>

UID

(0040,a124)

UI

0012

1.2.3.4.5.6.7.100

1.2

%enditem

1.3

%item

1.3

>

Relationship Type

(0040,a010)

CS

0010

HAS OBS CONTEXT

1.3

>

Value Type

(0040,a040)

CS

0006

PNAME

1.3

>

Concept Name Code Sequence

(0040,a043)

SQ

ffffffff

1.3

%item

1.3

>>

Code Value

(0008,0100)

SH

0006

000579

1.3

>>

Coding Scheme Designator

(0008,0102)

SH

0006

LNdemo

1.3

>>

Code Meaning

(0008,0104)

LO

0020

Patient-Data-Acquisition Subject

1.3

%enditem

1.3

%endseq

1.3

>

Person Name

(0040,a123)

PN

000e

Homer^Jane^^^

1.3

%enditem

1.4

%item

1.4

>

Relationship Type

(0040,a010)

CS

0008

CONTAINS

1.4

>

Value Type

(0040,a040)

CS

0004

CODE

1.4

>

Concept Name Code Sequence

(0040,a043)

SQ

ffffffff

1.4

%item

1.4

>>

Code Value

(0008,0100)

SH

0006

000444

1.4

>>

Coding Scheme Designator

(0008,0102)

SH

0006

LNdemo

1.4

>>

Code Meaning

(0008,0104)

LO

0008

Finding

1.4

%enditem

1.4

%endseq

1.4

>

Concept Code Sequence

(0040,a168)

SQ

ffffffff

1.4

%item

1.4

>>

Code Value

(0008,0100)

SH

0006

000333

1.4

>>

Coding Scheme Designator

(0008,0102)

SH

000e

99STElsewhere

1.4

>>

Code Meaning

(0008,0104)

LO

0004

Mass

1.4

%enditem

1.4

%endseq

1.4

>

Content Sequence

(0040,a730)

SQ

ffffffff

1.4.1

%item

1.4.1

>>

Relationship Type

(0040,a010)

CS

000e

HAS PROPERTIES

1.4.1

>>

Value Type

(0040,a040)

CS

0004

NUM

1.4.1

>>

Concept Name Code Sequence

(0040,a043)

SQ

ffffffff

1.4.1

%item

1.4.1

>>>

Code Value

(0008,0100)

SH

0006

000222

1.4.1

>>>

Coding Scheme Designator

(0008,0102)

SH

0006

LNdemo

1.4.1

>>>

Code Meaning

(0008,0104)

LO

0008

Diameter

1.4.1

%enditem

1.4.1

%endseq

1.4.1

>>

Measured Value Sequence

(0040,a300)

SQ

ffffffff

1.4.1

%item

1.4.1

>>>

Measurement Units Code Sequence

(0040,08ea)

SQ

ffffffff

1.4.1

%item

1.4.1

>>>>

Code Value

(0008,0100)

SH

0006

000111

1.4.1

>>>>

Coding Scheme Designator

(0008,0102)

SH

0008

SNMdemo

1.4.1

>>>>

Code Meaning

(0008,0104)

LO

0002

cm

1.4.1

%enditem

1.4.1

%endseq

1.4.1

>>>

Numeric Value

(0040,a30a)

DS

0004

1.3

1.4.1

%enditem

1.4.1

%endseq

1.4.1

%enditem

1.4.2

%item

1.4.2

>>

Relationship Type

(0040,a010)

CS

000e

HAS PROPERTIES

1.4.2

>>

Value Type

(0040,a040)

CS

0004

CODE

1.4.2

>>

Concept Name Code Sequence

(0040,a043)

SQ

ffffffff

1.4.2

%item

1.4.2

>>>

Code Value

(0008,0100)

SH

0006

111000

1.4.2

>>>

Coding Scheme Designator

(0008,0102)

SH

0008

SNMdemo

1.4.2

>>>

Code Meaning

(0008,0104)

LO

000c

Margination

1.4.2

%enditem

1.4.2

%endseq

1.4.2

>>

Concept Code Sequence

(0040,a168)

SQ

ffffffff

1.4.2

%item

1.4.2

>>>

Code Value

(0008,0100)

SH

0006

222000

1.4.2

>>>

Coding Scheme Designator

(0008,0102)

SH

0008

SNMdemo

1.4.2

>>>

Code Meaning

(0008,0104)

LO

000c

Infiltrative

1.4.2

%enditem

1.4.2

%endseq

1.4.2

%enditem

1.4

%endseq

1.4

%enditem

1.5

%item

1.5

>

Referenced SOP Sequence

(0008,1199)

SQ

ffffffff

1.5

%item

1.5

>>

Referenced SOP Class UID

(0008,1150)

UI

0008

1.2.3.4

1.5

>>

Referenced SOP Instance UID

(0008,1155)

UI

000a

1.2.3.4.5

1.5

%enditem

1.5

%endseq

1.5

>

Relationship Type

(0040,a010)

CS

0008

CONTAINS

1.5

>

Value Type

(0040,a040)

CS

0006

IMAGE

1.5

>

Concept Name Code Sequence

(0040,a043)

SQ

ffffffff

1.5

%item

1.5

>>

Code Value

(0008,0100)

SH

0006

333000

1.5

>>

Coding Scheme Designator

(0008,0102)

SH

0008

SNMdemo

1.5

>>

Code Meaning

(0008,0104)

LO

0008

Baseline

1.5

%enditem

1.5

%endseq

1.5

%enditem

1.6

%item

1.6

>

Relationship Type

(0040,a010)

CS

0008

CONTAINS

1.6

>

Value Type

(0040,a040)

CS

000a

CONTAINER

1.6

>

Concept Name Code Sequence

(0040,a043)

SQ

ffffffff

1.6

%item

1.6

>>

Code Value

(0008,0100)

SH

0006

555000

1.6

>>

Coding Scheme Designator

(0008,0102)

SH

0006

LNdemo

1.6

>>

Code Meaning

(0008,0104)

LO

000c

Conclusions

1.6

%enditem

1.6

%endseq

1.6

Continuity Of Content

(0040,a050)

CS

0008

SEPARATE

1.6

>

Content Sequence

(0040,a730)

SQ

ffffffff

1.6.1

%item

1.6.1

>>

Relationship Type

(0040,a010)

CS

0008

CONTAINS

1.6.1

>>

Value Type

(0040,a040)

CS

0004

CODE

1.6.1

>>

Concept Name Code Sequence

(0040,a043)

SQ

ffffffff

1.6.1

%item

1.6.1

>>>

Code Value

(0008,0100)

SH

0006

777000

1.6.1

>>>

Coding Scheme Designator

(0008,0102)

SH

0006

LNdemo

1.6.1

>>>

Code Meaning

(0008,0104)

LO

000a

Conclusion

1.6.1

%enditem

1.6.1

%endseq

1.6.1

>>

Concept Code Sequence

(0040,a168)

SQ

ffffffff

1.6.1

%item

1.6.1

>>>

Code Value

(0008,0100)

SH

0006

888000

1.6.1

>>>

Coding Scheme Designator

(0008,0102)

SH

000e

99STElsewhere

1.6.1

>>>

Code Meaning

(0008,0104)

LO

0014

Probable malignancy

1.6.1

%enditem

1.6.1

%endseq

1.6.1

>>

Content Sequence

(0040,a730)

SQ

ffffffff

1.6.1.1

%item

1.6.1.1

>>>

Relationship Type

(0040,a010)

CS

000e

INFERRED FROM

1.6.1.1

>>>

Referenced Content Item Identifier

(0040,db73)

UL

000c

0001,0004,0002

1.6.1.1

%enditem

1.6.1.2

%item

1.6.1.2

>>>

Relationship Type

(0040,a010)

CS

000e

INFERRED FROM

1.6.1.2

>>>

Referenced Content Item Identifier

(0040,db73)

UL

000c

0001,0007,0001

1.6.1.2

%enditem

1.6.1

%endseq

1.6.1

%enditem

1.6

%endseq

1.6

%enditem

1.7

%item

1.7

>

Relationship Type

(0040,a010)

CS

0008

CONTAINS

1.7

>

Value Type

(0040,a040)

CS

000a

CONTAINER

1.7

>

Concept Name Code Sequence

(0040,a043)

SQ

ffffffff

1.7

%item

1.7

>>

Code Value

(0008,0100)

SH

0006

999000

1.7

>>

Coding Scheme Designator

(0008,0102)

SH

0006

LNdemo

1.7

>>

Code Meaning

(0008,0104)

LO

0018

Specific Image Findings

1.7

%enditem

1.7

%endseq

1.7

Continuity Of Content

(0040,a050)

CS

0008

SEPARATE

1.7

>

Content Sequence

(0040,a730)

SQ

ffffffff

1.7.1

%item

1.7.1

>>

Relationship Type

(0040,a010)

CS

0008

CONTAINS

1.7.1

>>

Value Type

(0040,a040)

CS

0006

SCOORD

1.7.1

>>

Concept Name Code Sequence

(0040,a043)

SQ

ffffffff

1.7.1

%item

1.7.1

>>>

Code Value

(0008,0100)

SH

0006

333001

1.7.1

>>>

Coding Scheme Designator

(0008,0102)

SH

0008

SNMdemo

1.7.1

>>>

Code Meaning

(0008,0104)

LO

001e

Best illustration of findings

1.7.1

%enditem

1.7.1

%endseq

1.7.1

>>

Content Sequence

(0040,a730)

SQ

ffffffff

1.7.1.1

%item

1.7.1.1

>>>

Referenced SOP Sequence

(0008,1199)

SQ

ffffffff

1.7.1.1

%item

1.7.1.1

>>>>

Referenced SOP Class UID

(0008,1150)

UI

0008

1.2.3.4

1.7.1.1

>>>>

Referenced SOP Instance UID

(0008,1155)

UI

000a

1.2.3.4.6

1.7.1.1

%enditem

1.7.1.1

%endseq

1.7.1.1

>>>

Relationship Type

(0040,a010)

CS

000e

SELECTED FROM

1.7.1.1

>>>

Value Type

(0040,a040)

CS

0006

IMAGE

1.7.1.1

%enditem

1.7.1

%endseq

1.7.1

>>

Graphic Data

(0070,0022)

FL

0020

0,0,0,0,0,0,0,0

1.7.1

>>

Graphic Type

(0070,0023)

CS

0008

POLYLINE

1.7.1

%enditem

1.7

%endseq

1.7

%enditem

1.8

%item

1.8

>

Relationship Type

(0040,a010)

CS

0010

HAS CONCEPT MOD

1.8

>

Value Type

(0040,a040)

CS

0004

CODE

1.8

>

Concept Name Code Sequence

(0040,a043)

SQ

ffffffff

1.8

%item

1.8

>>

Code Value

(0008,0100)

SH

0006

123456

1.8

>>

Coding Scheme Designator

(0008,0102)

SH

0006

LNdemo

1.8

>>

Code Meaning

(0008,0104)

LO

0006

Views

1.8

%enditem

1.8

%endseq

1.8

>

Concept Code Sequence

(0040,a168)

SQ

ffffffff

1.8

%item

1.8

>>

Code Value

(0008,0100)

SH

0006

123457

1.8

>>

Coding Scheme Designator

(0008,0102)

SH

0006

LNdemo

1.8

>>

Code Meaning

(0008,0104)

LO

000e

PA and Lateral

1.8

%enditem

1.8

%endseq

1.8

%enditem

1

%endseq

E Mammography CAD (Informative)

This Annex was formerly located in Annex L “Mammography CAD (Informative)” in PS3.3 in the 2003 and earlier revisions of the standard.

E.1 Mammography CAD SR Content Tree Structure

The templates for the Mammography CAD SR IOD are defined in Mammography CAD SR IOD Templates in PS3.16 . Relationships defined in the Mammography CAD SR IOD templates are by-value, unless otherwise stated. Content items referenced from another SR object instance, such as a prior Mammography CAD SR, are inserted by-value in the new SR object instance, with appropriate original source observation context. It is necessary to update Rendering Intent, and referenced content item identifiers for by-reference relationships, within content items paraphrased from another source.

Top Levels of Mammography CAD SR Content Tree

Figure E.1-1. Top Levels of Mammography CAD SR Content Tree


The Document Root, Image Library, Summaries of Detections and Analyses, and CAD Processing and Findings Summary sub-trees together form the content tree of the Mammography CAD SR IOD. There are no constraints regarding the 1-n multiplicity of the Individual Impression/Recommendation or its underlying structure, other than the TID 4001 “Mammography CAD Overall Impression/Recommendation” and TID 4003 “Mammography CAD Individual Impression/Recommendation” requirements in PS3.16. Individual Impression/Recommendation containers may be organized, for example per image, per finding or composite feature, or some combination thereof.

Summary of Detections and Analyses Levels of Mammography CAD SR Content Tree

Figure E.1-2. Summary of Detections and Analyses Levels of Mammography CAD SR Content Tree


The Summary of Detections and Summary of Analyses sub-trees identify the algorithms used and the work done by the CAD device, and whether or not each process was performed on one or more entire images or selected regions of images. The findings of the detections and analyses are not encoded in the summary sub-trees, but rather in the CAD Processing and Findings Summary sub-tree. CAD processing may produce no findings, in which case the sub-trees of the CAD Processing and Findings Summary sub-tree are incompletely populated. This occurs in the following situations:

  1. All algorithms succeeded, but no findings resulted

  2. Some algorithms succeeded, some failed, but no findings resulted

  3. All algorithms failed

Note

  1. If the tree contains no Individual Impression/Recommendation nodes and all attempted detections and analyses succeeded then the mammography CAD device made no findings.

  2. Detections and Analyses that are not attempted are not listed in the Summary of Detections and Summary of Analyses trees.

  3. If the code value of the Summary of Detections or Summary of Analyses codes in TID 4000 “Mammography CAD Document Root” is "Not Attempted" then no detail is provided as to which algorithms were not attempted.

Example of Individual Impression/Recommendation Levels of Mammography CAD SR Content Tree

Figure E.1-3. Example of Individual Impression/Recommendation Levels of Mammography CAD SR Content Tree


The shaded area in Figure E.1-3 demarcates information resulting from Detection, whereas the unshaded area is information resulting from Analysis. This distinction is used in determining whether to place algorithm identification information in the Summary of Detections or Summary of Analyses sub-trees.

The clustering of calcifications within a single image is considered to be a Detection process that results in a Single Image Finding. The spatial correlation of a calcification cluster in two views, resulting in a Composite Feature, is considered Analysis. The clustering of calcifications in a single image is the only circumstance in which a Single Image Finding can result from the combination of other Single Image Findings, which must be Individual Calcifications.

Once a Single Image Finding or Composite Feature has been instantiated, it may be referenced by any number of Composite Features higher in the tree.

E.2 Mammography CAD SR Observation Context Encoding

  • Any content item in the Content tree that has been inserted (i.e., duplicated) from another SR object instance has a HAS OBS CONTEXT relationship to one or more content items that describe the context of the SR object instance from which it originated. This mechanism may be used to combine reports (e.g., Mammography CAD 1, Mammography CAD 2, Human).

  • By-reference relationships within Single Image Findings and Composite Features paraphrased from prior Mammography CAD SR objects need to be updated to properly reference Image Library Entries carried from the prior object to their new positions in the present object.

The Impression/Recommendation section of the SR Document Content tree of a Mammography CAD SR IOD may contain a mixture of current and prior single image findings and composite features. The content items from current and prior contexts are target content items that have a by-value INFERRED FROM relationship to a Composite Feature content item. Content items that come from a context other than the Initial Observation Context have a HAS OBS CONTEXT relationship to target content items that describe the context of the source document.

In Figure E.2-1, Composite Feature and Single Image Finding are current, and Single Image Finding (from Prior) is duplicated from a prior document.

Example of Use of Observation Context

Figure E.2-1. Example of Use of Observation Context


E.3 Mammography CAD SR Examples

The following is a simple and non-comprehensive illustration of an encoding of the Mammography CAD SR IOD for Mammography computer aided detection results. For brevity, some Mandatory content items are not included, such as several acquisition context content items for the images in the Image Library.

E.3.1 Example 1: Calcification and Mass Detection With No Findings

A mammography CAD device processes a typical screening mammography case, i.e., there are four films and no cancer. Mammography CAD runs both density and calcification detection successfully and finds nothing. The mammograms resemble:

Mammograms as Described in Example 1

Figure E.3-1. Mammograms as Described in Example 1


The content tree structure would resemble:

Node

Code Meaning of Concept Name

Code Meaning or Example Value

TID

1

Mammography CAD Report

TID 4000

1.1

Image Library

TID 4000

1.1.1

IMAGE 1

TID 4020

1.1.1.1

Image Laterality

Right

TID 4020

1.1.1.2

Image View

Cranio-caudal

TID 4020

1.1.1.3

Study Date

19980101

TID 4020

1.1.2

IMAGE 2

TID 4020

1.1.2.1

Image Laterality

Left

TID 4020

1.1.2.2

Image View

Cranio-caudal

TID 4020

1.1.2.3

Study Date

19980101

TID 4020

1.1.3

IMAGE 3

TID 4020

1.1.3.1

Image Laterality

Right

TID 4020

1.1.3.2

Image View

Medio-lateral oblique

TID 4020

1.1.3.3

Study Date

19980101

TID 4020

1.1.4

IMAGE 4

TID 4020

1.1.4.1

Image Laterality

Left

TID 4020

1.1.4.2

Image View

Medio-lateral oblique

TID 4020

1.1.4.3

Study Date

19980101

TID 4020

1.2

CAD Processing and Findings Summary

All algorithms succeeded; without findings

TID 4001

1.3

Summary of Detections

Succeeded

TID 4000

1.3.1

Successful Detections

TID 4015

1.3.1.1

Detection Performed

Mammography breast density

TID 4017

1.3.1.1.1

Algorithm Name

"Density Detector"

TID 4019

1.3.1.1.2

Algorithm Version

"V3.7"

TID 4019

1.3.1.1.3

Reference to node 1.1.1

TID 4017

1.3.1.1.4

Reference to node 1.1.2

TID 4017

1.3.1.1.5

Reference to node 1.1.3

TID 4017

1.3.1.1.6

Reference to node 1.1.4

TID 4017

1.3.1.2

Detection Performed

Individual Calcification

TID 4017

1.3.1.2.1

Algorithm Name

"Calc Detector"

TID 4019

1.3.1.2.2

Algorithm Version

"V2.4"

TID 4019

1.3.1.2.3

Reference to node 1.1.1

TID 4017

1.3.1.2.4

Reference to node 1.1.2

TID 4017

1.3.1.2.5

Reference to node 1.1.3

TID 4017

1.3.1.2.6

Reference to node 1.1.4

TID 4017

1.4

Summary of Analyses

Not Attempted

TID 4000

E.3.2 Example 2: Calcification and Mass Detection With Findings

A mammography CAD device processes a screening mammography case with four films and a mass in the left breast. Mammography CAD runs both density and calcification detection successfully. It finds two densities in the LCC, one density in the LMLO, a cluster of two calcifications in the RCC and a cluster of 20 calcifications in the RMLO. It performs two clustering algorithms. One identifies individual calcifications and then clusters them, and the second simply detects calcification clusters. It performs mass correlation and combines one of the LCC densities and the LMLO density into a mass; the other LCC density is flagged Not for Presentation, therefore not intended for display to the end-user. The mammograms resemble:

Mammograms as Described in Example 2

Figure E.3-2. Mammograms as Described in Example 2


The content tree structure in this example is complex. Structural illustrations of portions of the content tree are placed within the content tree table to show the relationships of data within the tree. Some content items are duplicated (and shown in boldface) to facilitate use of the diagrams.

Content Tree Root of Example 2 Content Tree

Figure E.3-3. Content Tree Root of Example 2 Content Tree


Node

Code Meaning of Concept Name

Code Meaning or Example Value

TID

1

Mammography CAD Report

TID 4000

1.1

Image Library

TID 4000

1.2

CAD Processing and Findings Summary

All algorithms succeeded; with findings

TID 4001

1.3

Summary of Detections

Succeeded

TID 4000

1.4

Summary of Analyses

Succeeded

TID 4000

Image Library Branch of Example 2 Content Tree

Figure E.3-4. Image Library Branch of Example 2 Content Tree


Node

Code Meaning of Concept Name

Code Meaning or Example Value

TID

1.1

Image Library

TID 4000

1.1.1

IMAGE 1

TID 4020

1.1.1.1

Image Laterality

Right

TID 4020

1.1.1.2

Image View

Cranio-caudal

TID 4020

1.1.1.3

Study Date

19990101

TID 4020

1.1.2

IMAGE 2

TID 4020

1.1.2.1

Image Laterality

Left

TID 4020

1.1.2.2

Image View

Cranio-caudal

TID 4020

1.1.2.3

Study Date

19990101

TID 4020

1.1.3

IMAGE 3

TID 4020

1.1.3.1

Image Laterality

Right

TID 4020

1.1.3.2

Image View

Medio-lateral oblique

TID 4020

1.1.3.3

Study Date

19990101

TID 4020

1.1.4

IMAGE 4

TID 4020

1.1.4.1

Image Laterality

Left

TID 4020

1.1.4.2

Image View

Medio-lateral oblique

TID 4020

1.1.4.3

Study Date

19990101

TID 4020

CAD Processing and Findings Summary Bifurcation of Example 2 Content Tree

Figure E.3-5. CAD Processing and Findings Summary Bifurcation of Example 2 Content Tree


Node

Code Meaning of Concept Name

Code Meaning or Example Value

TID

1.2

CAD Processing and Findings Summary

All algorithms succeeded; with findings

TID 4001

1.2.1

Individual Impression/Recommendation

TID 4003

1.2.2

Individual Impression/Recommendation

TID 4003

1.2.3

Individual Impression/Recommendation

TID 4003

1.2.4

Individual Impression/Recommendation

TID 4003

Individual Impression/Recommendation 1.2.1 from Example 2 Content Tree

Figure E.3-6. Individual Impression/Recommendation 1.2.1 from Example 2 Content Tree


Node

Code Meaning of Concept Name

Code Meaning or Example Value

TID

1.2.1

Individual Impression/Recommendation

TID 4003

1.2.1.1

Rendering Intent

Presentation Required

TID 4003

1.2.1.2

Composite Feature

Mass

TID 4004

1.2.1.2.1

Rendering Intent

Presentation Required

TID 4004

1.2.1.2.2

Composite type

Target content items are related spatially

TID 4005

1.2.1.2.3

Scope of Feature

Feature was detected on multiple images

TID 4005

1.2.1.2.4

Algorithm Name

"Mass Maker"

TID 4019

1.2.1.2.5

Algorithm Version

"V1.9"

TID 4019

1.2.1.2.6

Single Image Finding

Mammography breast density

TID 4006

1.2.1.2.7

Single Image Finding

Mammography breast density

TID 4006

Single Image Finding Density 1.2.1.2.6 from Example 2 Content Tree

Figure E.3-7. Single Image Finding Density 1.2.1.2.6 from Example 2 Content Tree


Node

Code Meaning of Concept Name

Code Meaning or Example Value

TID

1.2.1.2.6

Single Image Finding

Mammography breast density

TID 4006

1.2.1.2.6.1

Rendering Intent

Presentation Required

TID 4006

1.2.1.2.6.2

Algorithm Name

"Density Detector"

TID 4019

1.2.1.2.6.3

Algorithm Version

"V3.7"

TID 4019

1.2.1.2.6.4

Center

POINT

TID 4021

1.2.1.2.6.4.1

Reference to node 1.1.2

TID 4021

1.2.1.2.6.5

Outline

SCOORD

TID 4021

1.2.1.2.6.5.1

Reference to node 1.1.2

TID 4021

Single Image Finding Density 1.2.1.2.7 from Example 2 Content Tree

Figure E.3-8. Single Image Finding Density 1.2.1.2.7 from Example 2 Content Tree


Node

Code Meaning of Concept Name

Code Meaning or Example Value

TID

1.2.1.2.7

Single Image Finding

Mammography breast density

TID 4006

1.2.1.2.7.1

Rendering Intent

Presentation Required

TID 4006

1.2.1.2.7.2

Algorithm Name

"Density Detector"

TID 4019

1.2.1.2.7.3

Algorithm Version

"V3.7"

TID 4019

1.2.1.2.7.4

Center

POINT

TID 4021

1.2.1.2.7.4.1

Reference to node 1.1.4

TID 4021

1.2.1.2.7.5

Outline

SCOORD

TID 4021

1.2.1.2.7.5.1

Reference to node 1.1.4

TID 4021

1.2.1.2.7.6

Area of Defined Region

1 cm2

TID 1401

1.2.1.2.7.6.1

Area Outline

SCOORD

TID 1401

1.2.1.2.7.6.1.1

Reference to node 1.1.4

TID 1401

Individual Impression/Recommendation 1.2.2 from Example 2 Content Tree

Figure E.3-9. Individual Impression/Recommendation 1.2.2 from Example 2 Content Tree


Node

Code Meaning of Concept Name

Code Meaning or Example Value

TID

1.2.2