DICOM in Pathology

2005 DICOM International Conference
Budapest, Hungary

Bruce Beckwith, MD
Department of Pathology
Beth Israel Deaconess Medical Center
Harvard Medical School
Boston, Massachusetts, USA

Bruce_Beckwith@bidmc.harvard.edu
Future
Pathology Overview

- Anatomic Pathology involves rendering diagnoses based on examination and of tissue and fluid samples.
- Examination may be gross, microscopic or by instrument.
- Majority of diagnoses are visual, using light microscopy.
Outline

- History of DICOM Visible Light supplement
- Current state of DICOM use in Pathology
- Pathology workflow and barriers to adoption
- Whole slide imaging
- LDIP project
- Next Steps
Visible Light Supplement 15

- Ratified in 1999
- Defined four new image types (IOD’s)
 - endoscopic image
 - microscopic image
 - stage microscopy image
 - external camera image
Visible Light Supplement 15

- Support for
 - gross images
 - microscopic images
 - lab accession numbers
 - case history
 - SNOMED™ nomenclature and others
 - imaging system information
 - x, y, and z source position of images
Current State in Pathology

- Many PACS vendors are compliant with Visible Light images for pathology, endoscopy, etc.
- Growing number of imaging products targeted at pathology are DICOM compliant
- Anatomic pathology laboratory information systems offer limited image management
- Veteran’s Administration:
 - Pathology imaging vendors must be DICOM compliant and store images in VISTA PACS
- Small, but growing adoption of DICOM
Path PACS

- Humin Tec (Korea)
 - PACS system for pathology departments
 - 21 installations, all in Korea
 - Communicates with standard radiology PACS
 - Also offers station for specimen photography

- Apollo Telemedicine (USA)
 - PACS system allows acquisition and storage of images
 - Installed at Milwaukee Veterans Administration Hospitals
 - Images can be stored in VISTA imaging system
Other Vendor Activity

- **Visual-med**
 - Working with VA in Georgia and Washington to allow acquisition and forwarding of pathology images to VISTA PACS
 - Has stand alone product that can DICOMize digital images for forwarding to PACS

- **Olympus**
 - Working on a product to capture images and send to PACS

- **Aurora Interactive**
 - Grant from government of Canada
 - Researching feasibility of using DICOM for whole slide imaging and JPEG 2000 formats
 - Considering what forms of metadata are appropriate or feasible to include
Academic Center Efforts

- Univ. of Pittsburgh
 - AP LIS is image aware
 - Gross specimen photos and single field microscopic images saved
 - Transmitted to Enterprise Image Archive
 - Clinicians can see only selected images on completed cases
 - Main clinician interest is specimen photos
 - Main pathologist use is conferences
European Examples

- Otto von Guericke University in Magdeburg, Germany
 - Installed combined PACS and departmental information system in pathology

- University of Trieste, Italy
 - Has integrated pathology into their PACS implementation
Anatomic Pathology Workflow

- Tissue sample examined grossly (+/- photos)
- Small portions are selected and chemically processed (fixed) and embedded in paraffin
- Paraffin blocks are used to make microscope slides
- Slides are stained using various chemicals
- Slides are examined microscopically by pathologist (+/- photos)
Pathology Workflow
Diagnosis and Imaging

Current State

Future State?
Storage and Retrieval
Barriers to Adoption of Current Products

- **Turf**
 - PACS systems have traditionally been the domain of Radiology
 - Movement toward storing all medical images in a central location with a single viewing mechanism still in infancy

- **Workflow**
 - May need to manually annotate files with image description, accession number, etc.
 - If sending to PACS, need to order study first

- **Cost**
 - Image acquisition and annotation takes time – no extra reimbursement currently
 - Slide scanners and storage are costly
Imaging Comparison

- **Radiology**
 - digital acquisition
 - automatic image capture
 - clinician interpretable
 - many patient requests
 - large storage needs
 - digital images save money
 - large budgets
 - strong standards for storage and transfer

- **Pathology**
 - analog primary data
 - manual image capture
 - hard to interpret for non-pathologists
 - few patient requests
 - extreme storage needs
 - digital imaging costs more
 - modest budgets
 - limited pathology specific standards
Whole Slide Imaging

- Technically feasible
- Long scan times currently
- Enormous files
- Proprietary compression methods
- Mainly practical for research currently
- Allows remote slide reading
- Routine use soon?
Multiple companies working on scanners
Challenge is speed, file size, compression
Current speed is around 5 minutes per slide for conventional scanners
Matrix scanners claim <1 minute per slide
Whole Slide Imaging

- Typical glass slide is 2.6 x 7.6 cm
- Tissue often occupies 1.9 x 2.75 cm
- Scanning at medium power 21,260 pixels/cm
 \[40,394 \times 58,465 = 2.4 \text{ billion pixels}\]
 \[\times 24 \text{ bits color/pixel} = 7 \text{ GB image file}\]
- High power gives twice the resolution
 \[7 \text{ GB} \times 2 \times 2 = 28 \text{ GB}\]
 This is only in a single plane of focus!
Whole Slide Imaging

- Compression (lossy) may reduce file size to 100 MB – 1 GB
- Assume cases have 5 slides on average
- Assume a volume of 30,000 cases per year

\[
0.5 \text{ GB} \times 5 \times 30,000 = 75 \text{ Terabytes per year!}
\]
Laboratory Digital Imaging Project

- Mission: create a pathology image data exchange specification
- Concept: self-describing image files in XML
- Considering use of Open Microscopy Environment framework
- Initiated: May 2004
- First draft: 2007?
LDIP Goals

- Allow anyone who uses pathology images to exchange images and accompanying annotations in a format that can be completely understood by anyone.
- Allow vendors to write simple software that will port their proprietary images into or out of the data exchange standard.
- Allow easy interchange to and from DICOM.
- Allow the integration of metadata/data pairs with related data in other databases.
Metadata of Images

- Specimen / patient demographics / prior history
- Accession / slide / block number
- Anatomic location
- Stain / antibody / procedure
- Magnification / capture equipment
- Pathology report / diagnosis
- Description of image or slide contents
- Research protocol information
- Other characterization of tissue (genotype etc.)
LDIP Participants

<table>
<thead>
<tr>
<th>Commercial</th>
<th>Academic & Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trestle</td>
<td>Ohio State Univ.</td>
</tr>
<tr>
<td>Apollo</td>
<td>Harvard Univ.</td>
</tr>
<tr>
<td>dmetrix.com</td>
<td>Univ. of Michigan</td>
</tr>
<tr>
<td>Bioimagene</td>
<td>Univ. of Florida</td>
</tr>
<tr>
<td>Aperio</td>
<td>Henry Ford Hospital</td>
</tr>
<tr>
<td>Nikon</td>
<td>Cleveland Clinic</td>
</tr>
<tr>
<td>Olympus</td>
<td>Walter Reed Army Medical Center</td>
</tr>
<tr>
<td></td>
<td>National Institutes of Health</td>
</tr>
<tr>
<td></td>
<td>Armed Forces Institute of Path.</td>
</tr>
<tr>
<td></td>
<td>Assoc. Soc. Investigative Path.</td>
</tr>
</tbody>
</table>
Roadmap

- **DICOM**
 - WG-10 (strategic advisory) looking into pathology
 - Submit updated work item proposal for pathology
 - Build relationships with pathology vendors and LDIP

- **LDIP**
 - Continue work on data specification
 - Ensure DICOM compatibility
 - Liaison with DICOM and others

- **Other organizations?**
Support for whole-slide microscopic images
Support for navigating and selecting a region of interest from within entire slide image
Support for multi-resolution formats including multiple pyramid voxel conventions
Support for multispectral and hyperspectral modality images
Workflow model for pathology
Selected References

- Whole slide imaging
 - Aperio www.aperio.com
 - Bacus www.bacuslabs.com
 - Trestle www.trestlecorp.com
 - Dmetrix www.dmetrix.net

- Laboratory Digital Imaging Project
 www.ldip.org
 www.openmicroscopy.org
Selected References

Pathology implementations

Magdeburg: Pathology Research and Practice, Nov. 2002. 198:679-684

Trieste: Medicon 2001
http://www.tbs.ts.it/archives/medicon01-belloni.pdf